Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To understand what the graph of \( g(x) = f(4x) \) looks like, let us analyze the given functions step by step.
Given the function \( f(x) = x^2 \), we need to determine the form of the transformed function \( g(x) \).
### Step-by-Step Analysis
1. Original Function:
\( f(x) = x^2 \) is a standard quadratic function with its graph being a parabola that opens upwards, with the vertex at the origin \((0, 0)\).
2. Transformation:
We want to find \( g(x) = f(4x) \).
Substituting \( 4x \) into the function \( f \):
[tex]\[ g(x) = f(4x) = (4x)^2 \][/tex]
Simplifying, we get:
[tex]\[ g(x) = 16x^2 \][/tex]
### Graphical Interpretation
3. Effect on the Graph:
- The transformation from \( f(x) = x^2 \) to \( g(x) = 16x^2 \) affects the graph in a specific way: it compresses the graph horizontally by a factor of 4.
- In general, \( g(x) = f(ax) \) horizontally compresses the graph of \( f(x) \) by a factor of \( a \) if \( a > 1 \) (stretching if \( 0 < a < 1 \)).
4. Comparison of Graphs:
- The original graph \( f(x) = x^2 \):
- Vertex at (0, 0),
- Symmetric about the y-axis,
- Parabola opens upwards.
- The modified graph \( g(x) = 16x^2 \):
- Also a parabola that opens upwards,
- Still symmetric about the y-axis,
- The graph is narrower compared to \( f(x) = x^2 \), because every \( x \) value is effectively "multiplied by 4" before squaring.
### Detailed Graph Analysis
5. Critical Points:
- For a few key \( x \)-values, let's compare \( f(x) \) and \( g(x) \):
- At \( x = 1 \):
[tex]\[ f(1) = 1^2 = 1 \quad \text{and} \quad g(1) = 16(1)^2 = 16 \][/tex]
- At \( x = 2 \):
[tex]\[ f(2) = 2^2 = 4 \quad \text{and} \quad g(2) = 16(2)^2 = 64 \][/tex]
- The value of \( g(x) \) grows much faster than \( f(x) \) due to the coefficient 16.
### Conclusion
- The graph of \( g(x) = f(4x) = 16x^2 \) will be a parabola opening upwards, narrower than the original function \( f(x) = x^2 \).
### Graph Sketch
- Original graph \( f(x) = x^2 \):
[tex]\[ \text{Sketch:} \quad \cup \text{ (standard wide parabola)} \][/tex]
- Transformed graph \( g(x) = 16x^2 \):
[tex]\[ \text{Sketch:} \quad \cup \text{ (narrower parabola)} \][/tex]
This visualization guides us to the correct transformed graph, ensuring careful interpretation of horizontal compression by a factor of 4.
Given the function \( f(x) = x^2 \), we need to determine the form of the transformed function \( g(x) \).
### Step-by-Step Analysis
1. Original Function:
\( f(x) = x^2 \) is a standard quadratic function with its graph being a parabola that opens upwards, with the vertex at the origin \((0, 0)\).
2. Transformation:
We want to find \( g(x) = f(4x) \).
Substituting \( 4x \) into the function \( f \):
[tex]\[ g(x) = f(4x) = (4x)^2 \][/tex]
Simplifying, we get:
[tex]\[ g(x) = 16x^2 \][/tex]
### Graphical Interpretation
3. Effect on the Graph:
- The transformation from \( f(x) = x^2 \) to \( g(x) = 16x^2 \) affects the graph in a specific way: it compresses the graph horizontally by a factor of 4.
- In general, \( g(x) = f(ax) \) horizontally compresses the graph of \( f(x) \) by a factor of \( a \) if \( a > 1 \) (stretching if \( 0 < a < 1 \)).
4. Comparison of Graphs:
- The original graph \( f(x) = x^2 \):
- Vertex at (0, 0),
- Symmetric about the y-axis,
- Parabola opens upwards.
- The modified graph \( g(x) = 16x^2 \):
- Also a parabola that opens upwards,
- Still symmetric about the y-axis,
- The graph is narrower compared to \( f(x) = x^2 \), because every \( x \) value is effectively "multiplied by 4" before squaring.
### Detailed Graph Analysis
5. Critical Points:
- For a few key \( x \)-values, let's compare \( f(x) \) and \( g(x) \):
- At \( x = 1 \):
[tex]\[ f(1) = 1^2 = 1 \quad \text{and} \quad g(1) = 16(1)^2 = 16 \][/tex]
- At \( x = 2 \):
[tex]\[ f(2) = 2^2 = 4 \quad \text{and} \quad g(2) = 16(2)^2 = 64 \][/tex]
- The value of \( g(x) \) grows much faster than \( f(x) \) due to the coefficient 16.
### Conclusion
- The graph of \( g(x) = f(4x) = 16x^2 \) will be a parabola opening upwards, narrower than the original function \( f(x) = x^2 \).
### Graph Sketch
- Original graph \( f(x) = x^2 \):
[tex]\[ \text{Sketch:} \quad \cup \text{ (standard wide parabola)} \][/tex]
- Transformed graph \( g(x) = 16x^2 \):
[tex]\[ \text{Sketch:} \quad \cup \text{ (narrower parabola)} \][/tex]
This visualization guides us to the correct transformed graph, ensuring careful interpretation of horizontal compression by a factor of 4.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.