Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's perform the multiplication of the expressions \( (5x^2 + 7xy + 10y^2) \times (5x - 7y) \) step by step using the vertical method.
First, we'll write out the expressions to be multiplied:
[tex]\[ \begin{array}{c} (5 x^2 + 7 x y + 10 y^2) \\ \times (5 x - 7 y) \\ \end{array} \][/tex]
Now, we will decompose and multiply each term in the polynomial \( 5x - 7y \) by each term in the polynomial \( 5x^2 + 7xy + 10y^2 \).
1. Multiply each term in \( 5x^2 + 7xy + 10y^2 \) by \( 5x \):
[tex]\[ \begin{array}{c} 5x \cdot (5x^2 + 7xy + 10y^2) \\ = 5x \cdot 5x^2 + 5x \cdot 7xy + 5x \cdot 10y^2 \\ = 25x^3 + 35x^2y + 50xy^2 \end{array} \][/tex]
2. Multiply each term in \( 5x^2 + 7xy + 10y^2 \) by \(-7y\):
[tex]\[ \begin{array}{c} -7y \cdot (5x^2 + 7xy + 10y^2) \\ = -7y \cdot 5x^2 + -7y \cdot 7xy + -7y \cdot 10y^2 \\ = -35x^2y - 49xy^2 - 70y^3 \end{array} \][/tex]
3. Combine the results:
We add the products obtained in the previous steps:
[tex]\[ (25x^3 + 35x^2y + 50xy^2) + (-35x^2y - 49xy^2 - 70y^3) \][/tex]
Now, let's combine like terms to get the final expression:
[tex]\[ \begin{aligned} &25x^3 + 35x^2y - 35x^2y + 50xy^2 - 49xy^2 - 70y^3 \\ =& 25x^3 + (35x^2y - 35x^2y) + (50xy^2 - 49xy^2) - 70y^3 \\ =& 25x^3 + 0x^2y + 1xy^2 - 70y^3 \\ =& 25x^3 + xy^2 - 70y^3 \end{aligned} \][/tex]
Thus, the product of the given expressions is:
[tex]\[ (5x^2 + 7xy + 10y^2) \times (5x - 7y) = 25x^3 + xy^2 - 70y^3 \][/tex]
This completes our detailed, step-by-step solution.
First, we'll write out the expressions to be multiplied:
[tex]\[ \begin{array}{c} (5 x^2 + 7 x y + 10 y^2) \\ \times (5 x - 7 y) \\ \end{array} \][/tex]
Now, we will decompose and multiply each term in the polynomial \( 5x - 7y \) by each term in the polynomial \( 5x^2 + 7xy + 10y^2 \).
1. Multiply each term in \( 5x^2 + 7xy + 10y^2 \) by \( 5x \):
[tex]\[ \begin{array}{c} 5x \cdot (5x^2 + 7xy + 10y^2) \\ = 5x \cdot 5x^2 + 5x \cdot 7xy + 5x \cdot 10y^2 \\ = 25x^3 + 35x^2y + 50xy^2 \end{array} \][/tex]
2. Multiply each term in \( 5x^2 + 7xy + 10y^2 \) by \(-7y\):
[tex]\[ \begin{array}{c} -7y \cdot (5x^2 + 7xy + 10y^2) \\ = -7y \cdot 5x^2 + -7y \cdot 7xy + -7y \cdot 10y^2 \\ = -35x^2y - 49xy^2 - 70y^3 \end{array} \][/tex]
3. Combine the results:
We add the products obtained in the previous steps:
[tex]\[ (25x^3 + 35x^2y + 50xy^2) + (-35x^2y - 49xy^2 - 70y^3) \][/tex]
Now, let's combine like terms to get the final expression:
[tex]\[ \begin{aligned} &25x^3 + 35x^2y - 35x^2y + 50xy^2 - 49xy^2 - 70y^3 \\ =& 25x^3 + (35x^2y - 35x^2y) + (50xy^2 - 49xy^2) - 70y^3 \\ =& 25x^3 + 0x^2y + 1xy^2 - 70y^3 \\ =& 25x^3 + xy^2 - 70y^3 \end{aligned} \][/tex]
Thus, the product of the given expressions is:
[tex]\[ (5x^2 + 7xy + 10y^2) \times (5x - 7y) = 25x^3 + xy^2 - 70y^3 \][/tex]
This completes our detailed, step-by-step solution.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.