Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's perform the multiplication of the expressions \( (5x^2 + 7xy + 10y^2) \times (5x - 7y) \) step by step using the vertical method.
First, we'll write out the expressions to be multiplied:
[tex]\[ \begin{array}{c} (5 x^2 + 7 x y + 10 y^2) \\ \times (5 x - 7 y) \\ \end{array} \][/tex]
Now, we will decompose and multiply each term in the polynomial \( 5x - 7y \) by each term in the polynomial \( 5x^2 + 7xy + 10y^2 \).
1. Multiply each term in \( 5x^2 + 7xy + 10y^2 \) by \( 5x \):
[tex]\[ \begin{array}{c} 5x \cdot (5x^2 + 7xy + 10y^2) \\ = 5x \cdot 5x^2 + 5x \cdot 7xy + 5x \cdot 10y^2 \\ = 25x^3 + 35x^2y + 50xy^2 \end{array} \][/tex]
2. Multiply each term in \( 5x^2 + 7xy + 10y^2 \) by \(-7y\):
[tex]\[ \begin{array}{c} -7y \cdot (5x^2 + 7xy + 10y^2) \\ = -7y \cdot 5x^2 + -7y \cdot 7xy + -7y \cdot 10y^2 \\ = -35x^2y - 49xy^2 - 70y^3 \end{array} \][/tex]
3. Combine the results:
We add the products obtained in the previous steps:
[tex]\[ (25x^3 + 35x^2y + 50xy^2) + (-35x^2y - 49xy^2 - 70y^3) \][/tex]
Now, let's combine like terms to get the final expression:
[tex]\[ \begin{aligned} &25x^3 + 35x^2y - 35x^2y + 50xy^2 - 49xy^2 - 70y^3 \\ =& 25x^3 + (35x^2y - 35x^2y) + (50xy^2 - 49xy^2) - 70y^3 \\ =& 25x^3 + 0x^2y + 1xy^2 - 70y^3 \\ =& 25x^3 + xy^2 - 70y^3 \end{aligned} \][/tex]
Thus, the product of the given expressions is:
[tex]\[ (5x^2 + 7xy + 10y^2) \times (5x - 7y) = 25x^3 + xy^2 - 70y^3 \][/tex]
This completes our detailed, step-by-step solution.
First, we'll write out the expressions to be multiplied:
[tex]\[ \begin{array}{c} (5 x^2 + 7 x y + 10 y^2) \\ \times (5 x - 7 y) \\ \end{array} \][/tex]
Now, we will decompose and multiply each term in the polynomial \( 5x - 7y \) by each term in the polynomial \( 5x^2 + 7xy + 10y^2 \).
1. Multiply each term in \( 5x^2 + 7xy + 10y^2 \) by \( 5x \):
[tex]\[ \begin{array}{c} 5x \cdot (5x^2 + 7xy + 10y^2) \\ = 5x \cdot 5x^2 + 5x \cdot 7xy + 5x \cdot 10y^2 \\ = 25x^3 + 35x^2y + 50xy^2 \end{array} \][/tex]
2. Multiply each term in \( 5x^2 + 7xy + 10y^2 \) by \(-7y\):
[tex]\[ \begin{array}{c} -7y \cdot (5x^2 + 7xy + 10y^2) \\ = -7y \cdot 5x^2 + -7y \cdot 7xy + -7y \cdot 10y^2 \\ = -35x^2y - 49xy^2 - 70y^3 \end{array} \][/tex]
3. Combine the results:
We add the products obtained in the previous steps:
[tex]\[ (25x^3 + 35x^2y + 50xy^2) + (-35x^2y - 49xy^2 - 70y^3) \][/tex]
Now, let's combine like terms to get the final expression:
[tex]\[ \begin{aligned} &25x^3 + 35x^2y - 35x^2y + 50xy^2 - 49xy^2 - 70y^3 \\ =& 25x^3 + (35x^2y - 35x^2y) + (50xy^2 - 49xy^2) - 70y^3 \\ =& 25x^3 + 0x^2y + 1xy^2 - 70y^3 \\ =& 25x^3 + xy^2 - 70y^3 \end{aligned} \][/tex]
Thus, the product of the given expressions is:
[tex]\[ (5x^2 + 7xy + 10y^2) \times (5x - 7y) = 25x^3 + xy^2 - 70y^3 \][/tex]
This completes our detailed, step-by-step solution.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.