Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve each part of the problem, let's break it down step-by-step.
1. Modeling the Number of Cupcakes Lisa Makes in \( h \) Hours:
- Lisa bakes 3 dozen cupcakes every hour.
- Since 1 dozen equals 12 cupcakes, Lisa makes \( 3 \times 12 = 36 \) cupcakes each hour.
- Therefore, the number of cupcakes \( n \) that Lisa makes in \( h \) hours is \( 36h \).
So, \( n(h) = 36h \).
2. Cost Function in Terms of Hours, \( h \):
- The cost function of making \( n \) cupcakes is given by \( C(n) = 60 + 0.45n \).
- We want the cost function in terms of hours \( h \).
- We already have \( n(h) = 36h \).
- Substituting \( n = 36h \) into the cost function gives:
[tex]\[ C(n) = 60 + 0.45 \times 36h \][/tex]
Simplifying:
[tex]\[ C(h) = 60 + 16.2h \][/tex]
So, the cost function in terms of hours is \( C(h) = 60 + 16.2h \).
3. Cost for Making Cupcakes for 2 Hours:
- We use the cost function \( C(h) = 60 + 16.2h \) to find the cost for 2 hours.
- Substitute \( h = 2 \) into the cost function:
[tex]\[ C(2) = 60 + 16.2 \times 2 \][/tex]
[tex]\[ C(2) = 60 + 32.4 \][/tex]
[tex]\[ C(2) = 92.4 \][/tex]
So, Lisa's cost for making cupcakes for 2 hours is \( \$92.40 \).
Therefore, the correct answers are:
- The function that models the number of cupcakes Lisa makes in \( h \) hours is: \( n(h) = 36h \).
- The cost function in terms of hours, \( h \), is: \( C(h) = 60 + 16.2h \).
- Lisa's cost for making cupcakes for 2 hours is: [tex]\( \$92.40 \)[/tex].
1. Modeling the Number of Cupcakes Lisa Makes in \( h \) Hours:
- Lisa bakes 3 dozen cupcakes every hour.
- Since 1 dozen equals 12 cupcakes, Lisa makes \( 3 \times 12 = 36 \) cupcakes each hour.
- Therefore, the number of cupcakes \( n \) that Lisa makes in \( h \) hours is \( 36h \).
So, \( n(h) = 36h \).
2. Cost Function in Terms of Hours, \( h \):
- The cost function of making \( n \) cupcakes is given by \( C(n) = 60 + 0.45n \).
- We want the cost function in terms of hours \( h \).
- We already have \( n(h) = 36h \).
- Substituting \( n = 36h \) into the cost function gives:
[tex]\[ C(n) = 60 + 0.45 \times 36h \][/tex]
Simplifying:
[tex]\[ C(h) = 60 + 16.2h \][/tex]
So, the cost function in terms of hours is \( C(h) = 60 + 16.2h \).
3. Cost for Making Cupcakes for 2 Hours:
- We use the cost function \( C(h) = 60 + 16.2h \) to find the cost for 2 hours.
- Substitute \( h = 2 \) into the cost function:
[tex]\[ C(2) = 60 + 16.2 \times 2 \][/tex]
[tex]\[ C(2) = 60 + 32.4 \][/tex]
[tex]\[ C(2) = 92.4 \][/tex]
So, Lisa's cost for making cupcakes for 2 hours is \( \$92.40 \).
Therefore, the correct answers are:
- The function that models the number of cupcakes Lisa makes in \( h \) hours is: \( n(h) = 36h \).
- The cost function in terms of hours, \( h \), is: \( C(h) = 60 + 16.2h \).
- Lisa's cost for making cupcakes for 2 hours is: [tex]\( \$92.40 \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.