At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve each part of the problem, let's break it down step-by-step.
1. Modeling the Number of Cupcakes Lisa Makes in \( h \) Hours:
- Lisa bakes 3 dozen cupcakes every hour.
- Since 1 dozen equals 12 cupcakes, Lisa makes \( 3 \times 12 = 36 \) cupcakes each hour.
- Therefore, the number of cupcakes \( n \) that Lisa makes in \( h \) hours is \( 36h \).
So, \( n(h) = 36h \).
2. Cost Function in Terms of Hours, \( h \):
- The cost function of making \( n \) cupcakes is given by \( C(n) = 60 + 0.45n \).
- We want the cost function in terms of hours \( h \).
- We already have \( n(h) = 36h \).
- Substituting \( n = 36h \) into the cost function gives:
[tex]\[ C(n) = 60 + 0.45 \times 36h \][/tex]
Simplifying:
[tex]\[ C(h) = 60 + 16.2h \][/tex]
So, the cost function in terms of hours is \( C(h) = 60 + 16.2h \).
3. Cost for Making Cupcakes for 2 Hours:
- We use the cost function \( C(h) = 60 + 16.2h \) to find the cost for 2 hours.
- Substitute \( h = 2 \) into the cost function:
[tex]\[ C(2) = 60 + 16.2 \times 2 \][/tex]
[tex]\[ C(2) = 60 + 32.4 \][/tex]
[tex]\[ C(2) = 92.4 \][/tex]
So, Lisa's cost for making cupcakes for 2 hours is \( \$92.40 \).
Therefore, the correct answers are:
- The function that models the number of cupcakes Lisa makes in \( h \) hours is: \( n(h) = 36h \).
- The cost function in terms of hours, \( h \), is: \( C(h) = 60 + 16.2h \).
- Lisa's cost for making cupcakes for 2 hours is: [tex]\( \$92.40 \)[/tex].
1. Modeling the Number of Cupcakes Lisa Makes in \( h \) Hours:
- Lisa bakes 3 dozen cupcakes every hour.
- Since 1 dozen equals 12 cupcakes, Lisa makes \( 3 \times 12 = 36 \) cupcakes each hour.
- Therefore, the number of cupcakes \( n \) that Lisa makes in \( h \) hours is \( 36h \).
So, \( n(h) = 36h \).
2. Cost Function in Terms of Hours, \( h \):
- The cost function of making \( n \) cupcakes is given by \( C(n) = 60 + 0.45n \).
- We want the cost function in terms of hours \( h \).
- We already have \( n(h) = 36h \).
- Substituting \( n = 36h \) into the cost function gives:
[tex]\[ C(n) = 60 + 0.45 \times 36h \][/tex]
Simplifying:
[tex]\[ C(h) = 60 + 16.2h \][/tex]
So, the cost function in terms of hours is \( C(h) = 60 + 16.2h \).
3. Cost for Making Cupcakes for 2 Hours:
- We use the cost function \( C(h) = 60 + 16.2h \) to find the cost for 2 hours.
- Substitute \( h = 2 \) into the cost function:
[tex]\[ C(2) = 60 + 16.2 \times 2 \][/tex]
[tex]\[ C(2) = 60 + 32.4 \][/tex]
[tex]\[ C(2) = 92.4 \][/tex]
So, Lisa's cost for making cupcakes for 2 hours is \( \$92.40 \).
Therefore, the correct answers are:
- The function that models the number of cupcakes Lisa makes in \( h \) hours is: \( n(h) = 36h \).
- The cost function in terms of hours, \( h \), is: \( C(h) = 60 + 16.2h \).
- Lisa's cost for making cupcakes for 2 hours is: [tex]\( \$92.40 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.