Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the equation of a line that is parallel to \( y = -4x - 5 \) and passes through the point \((-2, 6)\), we need to follow these steps:
1. Identify the slope of the given line:
The equation of the given line is \( y = -4x - 5 \). This equation is in the slope-intercept form \( y = mx + b \), where \( m \) is the slope. For the given line, the slope (\( m \)) is \(-4\).
2. Use the slope for the new line:
Since parallel lines have the same slope, the slope of our new line (that we are looking to find) will also be \(-4\).
3. Use the point-slope form of the line equation:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \( (x_1, y_1) \) is a point on the line, and \( m \) is the slope. For our problem, \( (x_1, y_1) = (-2, 6) \) and \( m = -4 \).
4. Plug in the values:
Substitute the point \((-2, 6)\) and the slope \(-4\) into the point-slope form equation:
[tex]\[ y - 6 = -4(x + 2) \][/tex]
5. Simplify the equation:
Distribute the \(-4\) on the right-hand side:
[tex]\[ y - 6 = -4x - 8 \][/tex]
Add \(6\) to both sides to solve for \( y \):
[tex]\[ y = -4x - 8 + 6 \][/tex]
[tex]\[ y = -4x - 2 \][/tex]
This describes the new line that is parallel to the given line and passes through the point \((-2, 6)\). Therefore, the equation of the line is:
[tex]\[ \boxed{y = -4x - 2} \][/tex]
Hence, the correct option is [tex]\( \text{D.} \ y = -4x - 2 \)[/tex].
1. Identify the slope of the given line:
The equation of the given line is \( y = -4x - 5 \). This equation is in the slope-intercept form \( y = mx + b \), where \( m \) is the slope. For the given line, the slope (\( m \)) is \(-4\).
2. Use the slope for the new line:
Since parallel lines have the same slope, the slope of our new line (that we are looking to find) will also be \(-4\).
3. Use the point-slope form of the line equation:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \( (x_1, y_1) \) is a point on the line, and \( m \) is the slope. For our problem, \( (x_1, y_1) = (-2, 6) \) and \( m = -4 \).
4. Plug in the values:
Substitute the point \((-2, 6)\) and the slope \(-4\) into the point-slope form equation:
[tex]\[ y - 6 = -4(x + 2) \][/tex]
5. Simplify the equation:
Distribute the \(-4\) on the right-hand side:
[tex]\[ y - 6 = -4x - 8 \][/tex]
Add \(6\) to both sides to solve for \( y \):
[tex]\[ y = -4x - 8 + 6 \][/tex]
[tex]\[ y = -4x - 2 \][/tex]
This describes the new line that is parallel to the given line and passes through the point \((-2, 6)\). Therefore, the equation of the line is:
[tex]\[ \boxed{y = -4x - 2} \][/tex]
Hence, the correct option is [tex]\( \text{D.} \ y = -4x - 2 \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.