Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's break this down step-by-step.
### Part 1: Understanding the Problem
You're given fractions and you need to determine equivalence and convert them into like fractions. Then, you are to find three equivalent fractions for each of the given fractions.
### Part 2: Definitions and Clarifications
1. Like Fractions: Fractions that have the same denominator.
2. Equivalent Fractions: Different fractions that represent the same part of a whole.
### Part 3: Converting Given Fractions into Like Fractions
Let's list the original fractions:
- \(\frac{2}{5}\)
- \(\frac{3}{4}\)
- \(\frac{4}{7}\)
- \(2 \frac{8}{9} \rightarrow \frac{2 \cdot 9 + 8}{9} = \frac{26}{9}\)
To convert these fractions into like fractions, we need to find a common denominator. The denominators are 5, 4, 7, and 9. The least common multiple (LCM) of these numbers is 1260.
Now, convert each fraction:
1. \(\frac{2}{5}\):
[tex]\[ \frac{2}{5} \times \frac{252}{252} = \frac{504}{1260} \][/tex]
2. \(\frac{3}{4}\):
[tex]\[ \frac{3}{4} \times \frac{315}{315} = \frac{945}{1260} \][/tex]
3. \(\frac{4}{7}\):
[tex]\[ \frac{4}{7} \times \frac{180}{180} = \frac{720}{1260} \][/tex]
4. \(\frac{26}{9}\):
[tex]\[ \frac{26}{9} \times \frac{140}{140} = \frac{3640}{1260} \][/tex]
### Part 4: Finding Three Equivalent Fractions for Each
Now, let's find three equivalent fractions for each of the given fractions using smaller multipliers:
1. For \(\frac{2}{5}\):
[tex]\[ \frac{2}{5} \times 1 = 0.4 \][/tex]
[tex]\[ \frac{2}{5} \times 2 = 0.8 \][/tex]
[tex]\[ \frac{2}{5} \times 3 = 1.2 \][/tex]
2. For \(\frac{3}{4}\):
[tex]\[ \frac{3}{4} \times 1 = 0.75 \][/tex]
[tex]\[ \frac{3}{4} \times 2 = 1.5 \][/tex]
[tex]\[ \frac{3}{4} \times 3 = 2.25 \][/tex]
3. For \(\frac{4}{7}\):
[tex]\[ \frac{4}{7} \times 1 = 0.5714 \][/tex]
[tex]\[ \frac{4}{7} \times 2 = 1.1429 \][/tex]
[tex]\[ \frac{4}{7} \times 3 = 1.7143 \][/tex]
4. For \(\frac{26}{9}\):
[tex]\[ \frac{26}{9} \times 1 = 2.8889 \][/tex]
[tex]\[ \frac{26}{9} \times 2 = 5.7778 \][/tex]
[tex]\[ \frac{26}{9} \times 3 = 8.6667 \][/tex]
### Summary
The equivalent fractions were found to be:
1. For \(\frac{2}{5}\):
- 0.4, 0.8, 1.2
2. For \(\frac{3}{4}\):
- 0.75, 1.5, 2.25
3. For \(\frac{4}{7}\):
- 0.5714, 1.1429, 1.7143
4. For \(\(\frac{26}{9}\)\):
- 2.8889, 5.7778, 8.6667
These are their step-by-step equivalent fractions, and the process involved finding the least common denominators and calculating equivalent fractions by multiplication.
### Part 1: Understanding the Problem
You're given fractions and you need to determine equivalence and convert them into like fractions. Then, you are to find three equivalent fractions for each of the given fractions.
### Part 2: Definitions and Clarifications
1. Like Fractions: Fractions that have the same denominator.
2. Equivalent Fractions: Different fractions that represent the same part of a whole.
### Part 3: Converting Given Fractions into Like Fractions
Let's list the original fractions:
- \(\frac{2}{5}\)
- \(\frac{3}{4}\)
- \(\frac{4}{7}\)
- \(2 \frac{8}{9} \rightarrow \frac{2 \cdot 9 + 8}{9} = \frac{26}{9}\)
To convert these fractions into like fractions, we need to find a common denominator. The denominators are 5, 4, 7, and 9. The least common multiple (LCM) of these numbers is 1260.
Now, convert each fraction:
1. \(\frac{2}{5}\):
[tex]\[ \frac{2}{5} \times \frac{252}{252} = \frac{504}{1260} \][/tex]
2. \(\frac{3}{4}\):
[tex]\[ \frac{3}{4} \times \frac{315}{315} = \frac{945}{1260} \][/tex]
3. \(\frac{4}{7}\):
[tex]\[ \frac{4}{7} \times \frac{180}{180} = \frac{720}{1260} \][/tex]
4. \(\frac{26}{9}\):
[tex]\[ \frac{26}{9} \times \frac{140}{140} = \frac{3640}{1260} \][/tex]
### Part 4: Finding Three Equivalent Fractions for Each
Now, let's find three equivalent fractions for each of the given fractions using smaller multipliers:
1. For \(\frac{2}{5}\):
[tex]\[ \frac{2}{5} \times 1 = 0.4 \][/tex]
[tex]\[ \frac{2}{5} \times 2 = 0.8 \][/tex]
[tex]\[ \frac{2}{5} \times 3 = 1.2 \][/tex]
2. For \(\frac{3}{4}\):
[tex]\[ \frac{3}{4} \times 1 = 0.75 \][/tex]
[tex]\[ \frac{3}{4} \times 2 = 1.5 \][/tex]
[tex]\[ \frac{3}{4} \times 3 = 2.25 \][/tex]
3. For \(\frac{4}{7}\):
[tex]\[ \frac{4}{7} \times 1 = 0.5714 \][/tex]
[tex]\[ \frac{4}{7} \times 2 = 1.1429 \][/tex]
[tex]\[ \frac{4}{7} \times 3 = 1.7143 \][/tex]
4. For \(\frac{26}{9}\):
[tex]\[ \frac{26}{9} \times 1 = 2.8889 \][/tex]
[tex]\[ \frac{26}{9} \times 2 = 5.7778 \][/tex]
[tex]\[ \frac{26}{9} \times 3 = 8.6667 \][/tex]
### Summary
The equivalent fractions were found to be:
1. For \(\frac{2}{5}\):
- 0.4, 0.8, 1.2
2. For \(\frac{3}{4}\):
- 0.75, 1.5, 2.25
3. For \(\frac{4}{7}\):
- 0.5714, 1.1429, 1.7143
4. For \(\(\frac{26}{9}\)\):
- 2.8889, 5.7778, 8.6667
These are their step-by-step equivalent fractions, and the process involved finding the least common denominators and calculating equivalent fractions by multiplication.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.