Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's break this down step-by-step.
### Part 1: Understanding the Problem
You're given fractions and you need to determine equivalence and convert them into like fractions. Then, you are to find three equivalent fractions for each of the given fractions.
### Part 2: Definitions and Clarifications
1. Like Fractions: Fractions that have the same denominator.
2. Equivalent Fractions: Different fractions that represent the same part of a whole.
### Part 3: Converting Given Fractions into Like Fractions
Let's list the original fractions:
- \(\frac{2}{5}\)
- \(\frac{3}{4}\)
- \(\frac{4}{7}\)
- \(2 \frac{8}{9} \rightarrow \frac{2 \cdot 9 + 8}{9} = \frac{26}{9}\)
To convert these fractions into like fractions, we need to find a common denominator. The denominators are 5, 4, 7, and 9. The least common multiple (LCM) of these numbers is 1260.
Now, convert each fraction:
1. \(\frac{2}{5}\):
[tex]\[ \frac{2}{5} \times \frac{252}{252} = \frac{504}{1260} \][/tex]
2. \(\frac{3}{4}\):
[tex]\[ \frac{3}{4} \times \frac{315}{315} = \frac{945}{1260} \][/tex]
3. \(\frac{4}{7}\):
[tex]\[ \frac{4}{7} \times \frac{180}{180} = \frac{720}{1260} \][/tex]
4. \(\frac{26}{9}\):
[tex]\[ \frac{26}{9} \times \frac{140}{140} = \frac{3640}{1260} \][/tex]
### Part 4: Finding Three Equivalent Fractions for Each
Now, let's find three equivalent fractions for each of the given fractions using smaller multipliers:
1. For \(\frac{2}{5}\):
[tex]\[ \frac{2}{5} \times 1 = 0.4 \][/tex]
[tex]\[ \frac{2}{5} \times 2 = 0.8 \][/tex]
[tex]\[ \frac{2}{5} \times 3 = 1.2 \][/tex]
2. For \(\frac{3}{4}\):
[tex]\[ \frac{3}{4} \times 1 = 0.75 \][/tex]
[tex]\[ \frac{3}{4} \times 2 = 1.5 \][/tex]
[tex]\[ \frac{3}{4} \times 3 = 2.25 \][/tex]
3. For \(\frac{4}{7}\):
[tex]\[ \frac{4}{7} \times 1 = 0.5714 \][/tex]
[tex]\[ \frac{4}{7} \times 2 = 1.1429 \][/tex]
[tex]\[ \frac{4}{7} \times 3 = 1.7143 \][/tex]
4. For \(\frac{26}{9}\):
[tex]\[ \frac{26}{9} \times 1 = 2.8889 \][/tex]
[tex]\[ \frac{26}{9} \times 2 = 5.7778 \][/tex]
[tex]\[ \frac{26}{9} \times 3 = 8.6667 \][/tex]
### Summary
The equivalent fractions were found to be:
1. For \(\frac{2}{5}\):
- 0.4, 0.8, 1.2
2. For \(\frac{3}{4}\):
- 0.75, 1.5, 2.25
3. For \(\frac{4}{7}\):
- 0.5714, 1.1429, 1.7143
4. For \(\(\frac{26}{9}\)\):
- 2.8889, 5.7778, 8.6667
These are their step-by-step equivalent fractions, and the process involved finding the least common denominators and calculating equivalent fractions by multiplication.
### Part 1: Understanding the Problem
You're given fractions and you need to determine equivalence and convert them into like fractions. Then, you are to find three equivalent fractions for each of the given fractions.
### Part 2: Definitions and Clarifications
1. Like Fractions: Fractions that have the same denominator.
2. Equivalent Fractions: Different fractions that represent the same part of a whole.
### Part 3: Converting Given Fractions into Like Fractions
Let's list the original fractions:
- \(\frac{2}{5}\)
- \(\frac{3}{4}\)
- \(\frac{4}{7}\)
- \(2 \frac{8}{9} \rightarrow \frac{2 \cdot 9 + 8}{9} = \frac{26}{9}\)
To convert these fractions into like fractions, we need to find a common denominator. The denominators are 5, 4, 7, and 9. The least common multiple (LCM) of these numbers is 1260.
Now, convert each fraction:
1. \(\frac{2}{5}\):
[tex]\[ \frac{2}{5} \times \frac{252}{252} = \frac{504}{1260} \][/tex]
2. \(\frac{3}{4}\):
[tex]\[ \frac{3}{4} \times \frac{315}{315} = \frac{945}{1260} \][/tex]
3. \(\frac{4}{7}\):
[tex]\[ \frac{4}{7} \times \frac{180}{180} = \frac{720}{1260} \][/tex]
4. \(\frac{26}{9}\):
[tex]\[ \frac{26}{9} \times \frac{140}{140} = \frac{3640}{1260} \][/tex]
### Part 4: Finding Three Equivalent Fractions for Each
Now, let's find three equivalent fractions for each of the given fractions using smaller multipliers:
1. For \(\frac{2}{5}\):
[tex]\[ \frac{2}{5} \times 1 = 0.4 \][/tex]
[tex]\[ \frac{2}{5} \times 2 = 0.8 \][/tex]
[tex]\[ \frac{2}{5} \times 3 = 1.2 \][/tex]
2. For \(\frac{3}{4}\):
[tex]\[ \frac{3}{4} \times 1 = 0.75 \][/tex]
[tex]\[ \frac{3}{4} \times 2 = 1.5 \][/tex]
[tex]\[ \frac{3}{4} \times 3 = 2.25 \][/tex]
3. For \(\frac{4}{7}\):
[tex]\[ \frac{4}{7} \times 1 = 0.5714 \][/tex]
[tex]\[ \frac{4}{7} \times 2 = 1.1429 \][/tex]
[tex]\[ \frac{4}{7} \times 3 = 1.7143 \][/tex]
4. For \(\frac{26}{9}\):
[tex]\[ \frac{26}{9} \times 1 = 2.8889 \][/tex]
[tex]\[ \frac{26}{9} \times 2 = 5.7778 \][/tex]
[tex]\[ \frac{26}{9} \times 3 = 8.6667 \][/tex]
### Summary
The equivalent fractions were found to be:
1. For \(\frac{2}{5}\):
- 0.4, 0.8, 1.2
2. For \(\frac{3}{4}\):
- 0.75, 1.5, 2.25
3. For \(\frac{4}{7}\):
- 0.5714, 1.1429, 1.7143
4. For \(\(\frac{26}{9}\)\):
- 2.8889, 5.7778, 8.6667
These are their step-by-step equivalent fractions, and the process involved finding the least common denominators and calculating equivalent fractions by multiplication.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.