Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the equation of a line that is perpendicular to the given line and passes through a specific point, we follow these steps:
1. Identify the slope of the given line:
The given line is \( y + 1 = -3(x - 5) \). This can be written in slope-intercept form \( y = mx + b \).
Start by expanding the equation:
[tex]\[ y + 1 = -3(x - 5) \][/tex]
[tex]\[ y + 1 = -3x + 15 \][/tex]
[tex]\[ y = -3x + 14 \][/tex]
Hence, the slope of the given line is \( -3 \).
2. Find the slope of the perpendicular line:
The slopes of perpendicular lines are negative reciprocals of each other. Therefore, the slope \( m \) of the line perpendicular to the given line is:
[tex]\[ m = -\frac{1}{-3} = \frac{1}{3} \][/tex]
3. Use the point-slope form to find the equation of the new line:
The point-slope form of a line is \( y - y_1 = m(x - x_1) \), where \( (x_1, y_1) \) is a point on the line and \( m \) is the slope.
We have \( m = \frac{1}{3} \) and the point \( (4, -6) \). Substitute these values into the point-slope form:
[tex]\[ y - (-6) = \frac{1}{3}(x - 4) \][/tex]
Simplify to:
[tex]\[ y + 6 = \frac{1}{3}(x - 4) \][/tex]
4. Identify the correct choice:
Among the given options, the equation \( y + 6 = \frac{1}{3}(x - 4) \) corresponds to option D.
Therefore, the equation of the line that is perpendicular to \( y + 1 = -3(x - 5) \) and passes through the point \( (4, -6) \) is:
[tex]\[ \boxed{y + 6 = \frac{1}{3}(x - 4)} \][/tex]
Thus, the correct answer is [tex]\( D \)[/tex].
1. Identify the slope of the given line:
The given line is \( y + 1 = -3(x - 5) \). This can be written in slope-intercept form \( y = mx + b \).
Start by expanding the equation:
[tex]\[ y + 1 = -3(x - 5) \][/tex]
[tex]\[ y + 1 = -3x + 15 \][/tex]
[tex]\[ y = -3x + 14 \][/tex]
Hence, the slope of the given line is \( -3 \).
2. Find the slope of the perpendicular line:
The slopes of perpendicular lines are negative reciprocals of each other. Therefore, the slope \( m \) of the line perpendicular to the given line is:
[tex]\[ m = -\frac{1}{-3} = \frac{1}{3} \][/tex]
3. Use the point-slope form to find the equation of the new line:
The point-slope form of a line is \( y - y_1 = m(x - x_1) \), where \( (x_1, y_1) \) is a point on the line and \( m \) is the slope.
We have \( m = \frac{1}{3} \) and the point \( (4, -6) \). Substitute these values into the point-slope form:
[tex]\[ y - (-6) = \frac{1}{3}(x - 4) \][/tex]
Simplify to:
[tex]\[ y + 6 = \frac{1}{3}(x - 4) \][/tex]
4. Identify the correct choice:
Among the given options, the equation \( y + 6 = \frac{1}{3}(x - 4) \) corresponds to option D.
Therefore, the equation of the line that is perpendicular to \( y + 1 = -3(x - 5) \) and passes through the point \( (4, -6) \) is:
[tex]\[ \boxed{y + 6 = \frac{1}{3}(x - 4)} \][/tex]
Thus, the correct answer is [tex]\( D \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.