Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which equation models the total profit, \(y\), based on the number of tickets sold, \(x\), we need to analyze the given information step by step:
1. Identify the two points given:
- Point 1: \( (x_1, y_1) = (100, 300) \)
- Point 2: \( (x_2, y_2) = (200, 700) \)
2. Calculate the rate of profit per ticket (slope, \(m\)):
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{700 - 300}{200 - 100} = \frac{400}{100} = 4 \][/tex]
The slope \(m\) is 4, indicating that the profit increases by $4 for each ticket sold.
3. Use the point-slope form of the equation of a line to find the linear relationship:
The point-slope form is \( y - y_1 = m(x - x_1) \). Using point \( (100, 300) \) and slope \(m = 4\):
[tex]\[ y - 300 = 4(x - 100) \][/tex]
Therefore, the equation that models the total profit \( y \) based on the number of tickets sold \( x \) is:
[tex]\[ \boxed{y - 300 = 4(x - 100)} \][/tex]
Let's match this with the given multiple-choice options:
- A. \( y + 300 = 4(x + 100) \) — Incorrect form.
- B. \( y - 300 = 4(x - 100) \) — Correct form.
- C. \( y - 300 = 2.5(x-100) \) — Incorrect slope.
- D. \( y + 300 = 2.5(x+100) \) — Incorrect form and slope.
The correct equation is:
[tex]\[ \boxed{y - 300 = 4(x - 100)} \][/tex]
1. Identify the two points given:
- Point 1: \( (x_1, y_1) = (100, 300) \)
- Point 2: \( (x_2, y_2) = (200, 700) \)
2. Calculate the rate of profit per ticket (slope, \(m\)):
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{700 - 300}{200 - 100} = \frac{400}{100} = 4 \][/tex]
The slope \(m\) is 4, indicating that the profit increases by $4 for each ticket sold.
3. Use the point-slope form of the equation of a line to find the linear relationship:
The point-slope form is \( y - y_1 = m(x - x_1) \). Using point \( (100, 300) \) and slope \(m = 4\):
[tex]\[ y - 300 = 4(x - 100) \][/tex]
Therefore, the equation that models the total profit \( y \) based on the number of tickets sold \( x \) is:
[tex]\[ \boxed{y - 300 = 4(x - 100)} \][/tex]
Let's match this with the given multiple-choice options:
- A. \( y + 300 = 4(x + 100) \) — Incorrect form.
- B. \( y - 300 = 4(x - 100) \) — Correct form.
- C. \( y - 300 = 2.5(x-100) \) — Incorrect slope.
- D. \( y + 300 = 2.5(x+100) \) — Incorrect form and slope.
The correct equation is:
[tex]\[ \boxed{y - 300 = 4(x - 100)} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.