Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the limit \(\lim_{x \to 1} \frac{1-2x+x^2}{1+\log x-x}\), let's walk through the solution step-by-step:
### Step 1: Analyze the Limit
First, both the numerator and the denominator functions need to be analyzed as \(x\) approaches 1.
#### Expression Analysis at \(x = 1\):
- For the numerator \(1 - 2x + x^2\):
[tex]\[ 1 - 2(1) + (1)^2 = 1 - 2 + 1 = 0 \][/tex]
- For the denominator \(1 + \log x - x\):
[tex]\[ 1 + \log(1) - 1 = 1 + 0 - 1 = 0 \][/tex]
Both the numerator and the denominator approach 0 as \(x\) approaches 1, creating an indeterminate form of \(\frac{0}{0}\).
### Step 2: Apply L'Hôpital's Rule
Since we have the indeterminate form \(\frac{0}{0}\), we can apply L'Hôpital's Rule. According to L'Hôpital's Rule, if \(\lim_{x \to c} \frac{f(x)}{g(x)}\) gives \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), then:
[tex]\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \][/tex]
provided this latter limit exists.
#### Differentiating the Numerator and Denominator:
- Numerator \(1 - 2x + x^2\):
[tex]\[ \frac{d}{dx}\left(1 - 2x + x^2\right) = -2 + 2x \][/tex]
- Denominator \(1 + \log x - x\):
[tex]\[ \frac{d}{dx}\left(1 + \log x - x\right) = \frac{1}{x} - 1 \][/tex]
### Step 3: Apply the Derivatives:
Now, apply the derivatives and find the limit:
[tex]\[ \lim_{x \to 1} \frac{-2 + 2x}{\frac{1}{x} - 1} \][/tex]
Substitute \(x = 1\) into the derivatives:
- For the numerator \(-2 + 2(1) = -2 + 2 = 0\)
- For the denominator \(\frac{1}{1} - 1 = 1 - 1 = 0\)
Once again, we have the form \(\frac{0}{0}\), so we apply L'Hôpital's Rule again by differentiating the numerator and the denominator a second time.
- Second derivative of numerator \(-2 + 2x\):
[tex]\[ \frac{d}{dx}\left(-2 + 2x\right) = 2 \][/tex]
- Second derivative of denominator \(\frac{1}{x} - 1\):
[tex]\[ \frac{d}{dx}\left(\frac{1}{x} - 1\right) = -\frac{1}{x^2} \][/tex]
### Step 4: Apply the Second Derivatives:
[tex]\[ \lim_{x \to 1} \frac{2}{-\frac{1}{x^2}} \][/tex]
Substitute \(x = 1\):
[tex]\[ \frac{2}{-\frac{1}{1^2}} = \frac{2}{-1} = -2 \][/tex]
Thus, the limit is:
[tex]\[ \boxed{-2} \][/tex]
### Step 1: Analyze the Limit
First, both the numerator and the denominator functions need to be analyzed as \(x\) approaches 1.
#### Expression Analysis at \(x = 1\):
- For the numerator \(1 - 2x + x^2\):
[tex]\[ 1 - 2(1) + (1)^2 = 1 - 2 + 1 = 0 \][/tex]
- For the denominator \(1 + \log x - x\):
[tex]\[ 1 + \log(1) - 1 = 1 + 0 - 1 = 0 \][/tex]
Both the numerator and the denominator approach 0 as \(x\) approaches 1, creating an indeterminate form of \(\frac{0}{0}\).
### Step 2: Apply L'Hôpital's Rule
Since we have the indeterminate form \(\frac{0}{0}\), we can apply L'Hôpital's Rule. According to L'Hôpital's Rule, if \(\lim_{x \to c} \frac{f(x)}{g(x)}\) gives \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), then:
[tex]\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \][/tex]
provided this latter limit exists.
#### Differentiating the Numerator and Denominator:
- Numerator \(1 - 2x + x^2\):
[tex]\[ \frac{d}{dx}\left(1 - 2x + x^2\right) = -2 + 2x \][/tex]
- Denominator \(1 + \log x - x\):
[tex]\[ \frac{d}{dx}\left(1 + \log x - x\right) = \frac{1}{x} - 1 \][/tex]
### Step 3: Apply the Derivatives:
Now, apply the derivatives and find the limit:
[tex]\[ \lim_{x \to 1} \frac{-2 + 2x}{\frac{1}{x} - 1} \][/tex]
Substitute \(x = 1\) into the derivatives:
- For the numerator \(-2 + 2(1) = -2 + 2 = 0\)
- For the denominator \(\frac{1}{1} - 1 = 1 - 1 = 0\)
Once again, we have the form \(\frac{0}{0}\), so we apply L'Hôpital's Rule again by differentiating the numerator and the denominator a second time.
- Second derivative of numerator \(-2 + 2x\):
[tex]\[ \frac{d}{dx}\left(-2 + 2x\right) = 2 \][/tex]
- Second derivative of denominator \(\frac{1}{x} - 1\):
[tex]\[ \frac{d}{dx}\left(\frac{1}{x} - 1\right) = -\frac{1}{x^2} \][/tex]
### Step 4: Apply the Second Derivatives:
[tex]\[ \lim_{x \to 1} \frac{2}{-\frac{1}{x^2}} \][/tex]
Substitute \(x = 1\):
[tex]\[ \frac{2}{-\frac{1}{1^2}} = \frac{2}{-1} = -2 \][/tex]
Thus, the limit is:
[tex]\[ \boxed{-2} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.