Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the limit \(\lim_{x \to 1} \frac{1-2x+x^2}{1+\log x-x}\), let's walk through the solution step-by-step:
### Step 1: Analyze the Limit
First, both the numerator and the denominator functions need to be analyzed as \(x\) approaches 1.
#### Expression Analysis at \(x = 1\):
- For the numerator \(1 - 2x + x^2\):
[tex]\[ 1 - 2(1) + (1)^2 = 1 - 2 + 1 = 0 \][/tex]
- For the denominator \(1 + \log x - x\):
[tex]\[ 1 + \log(1) - 1 = 1 + 0 - 1 = 0 \][/tex]
Both the numerator and the denominator approach 0 as \(x\) approaches 1, creating an indeterminate form of \(\frac{0}{0}\).
### Step 2: Apply L'Hôpital's Rule
Since we have the indeterminate form \(\frac{0}{0}\), we can apply L'Hôpital's Rule. According to L'Hôpital's Rule, if \(\lim_{x \to c} \frac{f(x)}{g(x)}\) gives \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), then:
[tex]\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \][/tex]
provided this latter limit exists.
#### Differentiating the Numerator and Denominator:
- Numerator \(1 - 2x + x^2\):
[tex]\[ \frac{d}{dx}\left(1 - 2x + x^2\right) = -2 + 2x \][/tex]
- Denominator \(1 + \log x - x\):
[tex]\[ \frac{d}{dx}\left(1 + \log x - x\right) = \frac{1}{x} - 1 \][/tex]
### Step 3: Apply the Derivatives:
Now, apply the derivatives and find the limit:
[tex]\[ \lim_{x \to 1} \frac{-2 + 2x}{\frac{1}{x} - 1} \][/tex]
Substitute \(x = 1\) into the derivatives:
- For the numerator \(-2 + 2(1) = -2 + 2 = 0\)
- For the denominator \(\frac{1}{1} - 1 = 1 - 1 = 0\)
Once again, we have the form \(\frac{0}{0}\), so we apply L'Hôpital's Rule again by differentiating the numerator and the denominator a second time.
- Second derivative of numerator \(-2 + 2x\):
[tex]\[ \frac{d}{dx}\left(-2 + 2x\right) = 2 \][/tex]
- Second derivative of denominator \(\frac{1}{x} - 1\):
[tex]\[ \frac{d}{dx}\left(\frac{1}{x} - 1\right) = -\frac{1}{x^2} \][/tex]
### Step 4: Apply the Second Derivatives:
[tex]\[ \lim_{x \to 1} \frac{2}{-\frac{1}{x^2}} \][/tex]
Substitute \(x = 1\):
[tex]\[ \frac{2}{-\frac{1}{1^2}} = \frac{2}{-1} = -2 \][/tex]
Thus, the limit is:
[tex]\[ \boxed{-2} \][/tex]
### Step 1: Analyze the Limit
First, both the numerator and the denominator functions need to be analyzed as \(x\) approaches 1.
#### Expression Analysis at \(x = 1\):
- For the numerator \(1 - 2x + x^2\):
[tex]\[ 1 - 2(1) + (1)^2 = 1 - 2 + 1 = 0 \][/tex]
- For the denominator \(1 + \log x - x\):
[tex]\[ 1 + \log(1) - 1 = 1 + 0 - 1 = 0 \][/tex]
Both the numerator and the denominator approach 0 as \(x\) approaches 1, creating an indeterminate form of \(\frac{0}{0}\).
### Step 2: Apply L'Hôpital's Rule
Since we have the indeterminate form \(\frac{0}{0}\), we can apply L'Hôpital's Rule. According to L'Hôpital's Rule, if \(\lim_{x \to c} \frac{f(x)}{g(x)}\) gives \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), then:
[tex]\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \][/tex]
provided this latter limit exists.
#### Differentiating the Numerator and Denominator:
- Numerator \(1 - 2x + x^2\):
[tex]\[ \frac{d}{dx}\left(1 - 2x + x^2\right) = -2 + 2x \][/tex]
- Denominator \(1 + \log x - x\):
[tex]\[ \frac{d}{dx}\left(1 + \log x - x\right) = \frac{1}{x} - 1 \][/tex]
### Step 3: Apply the Derivatives:
Now, apply the derivatives and find the limit:
[tex]\[ \lim_{x \to 1} \frac{-2 + 2x}{\frac{1}{x} - 1} \][/tex]
Substitute \(x = 1\) into the derivatives:
- For the numerator \(-2 + 2(1) = -2 + 2 = 0\)
- For the denominator \(\frac{1}{1} - 1 = 1 - 1 = 0\)
Once again, we have the form \(\frac{0}{0}\), so we apply L'Hôpital's Rule again by differentiating the numerator and the denominator a second time.
- Second derivative of numerator \(-2 + 2x\):
[tex]\[ \frac{d}{dx}\left(-2 + 2x\right) = 2 \][/tex]
- Second derivative of denominator \(\frac{1}{x} - 1\):
[tex]\[ \frac{d}{dx}\left(\frac{1}{x} - 1\right) = -\frac{1}{x^2} \][/tex]
### Step 4: Apply the Second Derivatives:
[tex]\[ \lim_{x \to 1} \frac{2}{-\frac{1}{x^2}} \][/tex]
Substitute \(x = 1\):
[tex]\[ \frac{2}{-\frac{1}{1^2}} = \frac{2}{-1} = -2 \][/tex]
Thus, the limit is:
[tex]\[ \boxed{-2} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.