Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the limit \(\lim_{x \to 1} \frac{1-2x+x^2}{1+\log x-x}\), let's walk through the solution step-by-step:
### Step 1: Analyze the Limit
First, both the numerator and the denominator functions need to be analyzed as \(x\) approaches 1.
#### Expression Analysis at \(x = 1\):
- For the numerator \(1 - 2x + x^2\):
[tex]\[ 1 - 2(1) + (1)^2 = 1 - 2 + 1 = 0 \][/tex]
- For the denominator \(1 + \log x - x\):
[tex]\[ 1 + \log(1) - 1 = 1 + 0 - 1 = 0 \][/tex]
Both the numerator and the denominator approach 0 as \(x\) approaches 1, creating an indeterminate form of \(\frac{0}{0}\).
### Step 2: Apply L'Hôpital's Rule
Since we have the indeterminate form \(\frac{0}{0}\), we can apply L'Hôpital's Rule. According to L'Hôpital's Rule, if \(\lim_{x \to c} \frac{f(x)}{g(x)}\) gives \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), then:
[tex]\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \][/tex]
provided this latter limit exists.
#### Differentiating the Numerator and Denominator:
- Numerator \(1 - 2x + x^2\):
[tex]\[ \frac{d}{dx}\left(1 - 2x + x^2\right) = -2 + 2x \][/tex]
- Denominator \(1 + \log x - x\):
[tex]\[ \frac{d}{dx}\left(1 + \log x - x\right) = \frac{1}{x} - 1 \][/tex]
### Step 3: Apply the Derivatives:
Now, apply the derivatives and find the limit:
[tex]\[ \lim_{x \to 1} \frac{-2 + 2x}{\frac{1}{x} - 1} \][/tex]
Substitute \(x = 1\) into the derivatives:
- For the numerator \(-2 + 2(1) = -2 + 2 = 0\)
- For the denominator \(\frac{1}{1} - 1 = 1 - 1 = 0\)
Once again, we have the form \(\frac{0}{0}\), so we apply L'Hôpital's Rule again by differentiating the numerator and the denominator a second time.
- Second derivative of numerator \(-2 + 2x\):
[tex]\[ \frac{d}{dx}\left(-2 + 2x\right) = 2 \][/tex]
- Second derivative of denominator \(\frac{1}{x} - 1\):
[tex]\[ \frac{d}{dx}\left(\frac{1}{x} - 1\right) = -\frac{1}{x^2} \][/tex]
### Step 4: Apply the Second Derivatives:
[tex]\[ \lim_{x \to 1} \frac{2}{-\frac{1}{x^2}} \][/tex]
Substitute \(x = 1\):
[tex]\[ \frac{2}{-\frac{1}{1^2}} = \frac{2}{-1} = -2 \][/tex]
Thus, the limit is:
[tex]\[ \boxed{-2} \][/tex]
### Step 1: Analyze the Limit
First, both the numerator and the denominator functions need to be analyzed as \(x\) approaches 1.
#### Expression Analysis at \(x = 1\):
- For the numerator \(1 - 2x + x^2\):
[tex]\[ 1 - 2(1) + (1)^2 = 1 - 2 + 1 = 0 \][/tex]
- For the denominator \(1 + \log x - x\):
[tex]\[ 1 + \log(1) - 1 = 1 + 0 - 1 = 0 \][/tex]
Both the numerator and the denominator approach 0 as \(x\) approaches 1, creating an indeterminate form of \(\frac{0}{0}\).
### Step 2: Apply L'Hôpital's Rule
Since we have the indeterminate form \(\frac{0}{0}\), we can apply L'Hôpital's Rule. According to L'Hôpital's Rule, if \(\lim_{x \to c} \frac{f(x)}{g(x)}\) gives \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), then:
[tex]\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \][/tex]
provided this latter limit exists.
#### Differentiating the Numerator and Denominator:
- Numerator \(1 - 2x + x^2\):
[tex]\[ \frac{d}{dx}\left(1 - 2x + x^2\right) = -2 + 2x \][/tex]
- Denominator \(1 + \log x - x\):
[tex]\[ \frac{d}{dx}\left(1 + \log x - x\right) = \frac{1}{x} - 1 \][/tex]
### Step 3: Apply the Derivatives:
Now, apply the derivatives and find the limit:
[tex]\[ \lim_{x \to 1} \frac{-2 + 2x}{\frac{1}{x} - 1} \][/tex]
Substitute \(x = 1\) into the derivatives:
- For the numerator \(-2 + 2(1) = -2 + 2 = 0\)
- For the denominator \(\frac{1}{1} - 1 = 1 - 1 = 0\)
Once again, we have the form \(\frac{0}{0}\), so we apply L'Hôpital's Rule again by differentiating the numerator and the denominator a second time.
- Second derivative of numerator \(-2 + 2x\):
[tex]\[ \frac{d}{dx}\left(-2 + 2x\right) = 2 \][/tex]
- Second derivative of denominator \(\frac{1}{x} - 1\):
[tex]\[ \frac{d}{dx}\left(\frac{1}{x} - 1\right) = -\frac{1}{x^2} \][/tex]
### Step 4: Apply the Second Derivatives:
[tex]\[ \lim_{x \to 1} \frac{2}{-\frac{1}{x^2}} \][/tex]
Substitute \(x = 1\):
[tex]\[ \frac{2}{-\frac{1}{1^2}} = \frac{2}{-1} = -2 \][/tex]
Thus, the limit is:
[tex]\[ \boxed{-2} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.