Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the slope and a point on the line given by the equation \( y + 2 = 3(x - 7) \), we need to follow these steps:
1. Convert the equation to slope-intercept form ( \(y = mx + b\) ):
- Start with the given equation: \( y + 2 = 3(x - 7) \)
- Expand the right-hand side: \( y + 2 = 3x - 21 \)
- Subtract 2 from both sides to solve for \( y \): \( y = 3x - 21 - 2 \)
- Simplify the right-hand side: \( y = 3x - 23 \)
2. In the slope-intercept form \( y = mx + b \), the coefficient of \( x \) (which is 3) represents the slope \( m \). Therefore, the slope of the line is \( 3 \).
3. Find a point on the line:
- To find a specific point on the line, we can use the original equation. For simplicity, we can find the point where \( x = 7 \):
- Substitute \( x = 7 \) into the original equation: \( y + 2 = 3(7 - 7) \)
- Simplify the expression inside the parentheses: \( y + 2 = 3 \times 0 \)
- This reduces to \( y + 2 = 0 \)
- Solve for \( y \): \( y = -2 \)
So, the point \((7, -2)\) lies on the line.
Given the steps, the correct answer is:
C. The slope is 3 and [tex]\( (7, -2) \)[/tex] is on the line.
1. Convert the equation to slope-intercept form ( \(y = mx + b\) ):
- Start with the given equation: \( y + 2 = 3(x - 7) \)
- Expand the right-hand side: \( y + 2 = 3x - 21 \)
- Subtract 2 from both sides to solve for \( y \): \( y = 3x - 21 - 2 \)
- Simplify the right-hand side: \( y = 3x - 23 \)
2. In the slope-intercept form \( y = mx + b \), the coefficient of \( x \) (which is 3) represents the slope \( m \). Therefore, the slope of the line is \( 3 \).
3. Find a point on the line:
- To find a specific point on the line, we can use the original equation. For simplicity, we can find the point where \( x = 7 \):
- Substitute \( x = 7 \) into the original equation: \( y + 2 = 3(7 - 7) \)
- Simplify the expression inside the parentheses: \( y + 2 = 3 \times 0 \)
- This reduces to \( y + 2 = 0 \)
- Solve for \( y \): \( y = -2 \)
So, the point \((7, -2)\) lies on the line.
Given the steps, the correct answer is:
C. The slope is 3 and [tex]\( (7, -2) \)[/tex] is on the line.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.