Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which equation represents the line passing through the given points \((3, 1)\) and \((6, 6)\), we will follow these steps:
1. Calculate the slope of the line passing through the points \((3, 1)\) and \((6, 6)\):
The formula for the slope \(m\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates of the points:
[tex]\[ m = \frac{6 - 1}{6 - 3} = \frac{5}{3} \][/tex]
2. Determine the line equation using the slope \(m\) and one of the points.
A general form for the equation of a line with slope \(m\) passing through point \((x_1, y_1)\) is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substitute \(m = \frac{5}{3}\) and the point \((3, 1)\):
[tex]\[ y - 1 = \frac{5}{3}(x - 3) \][/tex]
Simplifying this equation to check if it aligns with any of the options:
[tex]\[ y - 1 = \frac{5}{3}(x - 3) \][/tex]
This matches exactly with option B:
[tex]\[ y - 1 = \frac{5}{3}(x - 3) \][/tex]
Thus, the correct equation representing the line that passes through the points \((3, 1)\) and \((6, 6)\) is:
[tex]\[ \boxed{B. \ y - 1 = \frac{5}{3}(x - 3)} \][/tex]
1. Calculate the slope of the line passing through the points \((3, 1)\) and \((6, 6)\):
The formula for the slope \(m\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates of the points:
[tex]\[ m = \frac{6 - 1}{6 - 3} = \frac{5}{3} \][/tex]
2. Determine the line equation using the slope \(m\) and one of the points.
A general form for the equation of a line with slope \(m\) passing through point \((x_1, y_1)\) is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substitute \(m = \frac{5}{3}\) and the point \((3, 1)\):
[tex]\[ y - 1 = \frac{5}{3}(x - 3) \][/tex]
Simplifying this equation to check if it aligns with any of the options:
[tex]\[ y - 1 = \frac{5}{3}(x - 3) \][/tex]
This matches exactly with option B:
[tex]\[ y - 1 = \frac{5}{3}(x - 3) \][/tex]
Thus, the correct equation representing the line that passes through the points \((3, 1)\) and \((6, 6)\) is:
[tex]\[ \boxed{B. \ y - 1 = \frac{5}{3}(x - 3)} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.