Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To match each function with its respective period, follow these steps:
Step 1: Identify the periods of each function based on the given results:
1. \( y = 5 \cot \pi - 8 \) has a period of \(\pi\).
2. \( y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \) has a period of \(2\pi\).
3. \( y = -\frac{1}{3} \csc 2x \) has a period of \(\pi\).
4. \( y = 5 \sec (2x + 2\pi) \) has a period of \(\pi\).
5. \( y = -6 \cot x - 10 \) has a period of \(\pi\).
6. \( y = -3 \tan \frac{x}{2} \) has a period of \(4\pi\).
Step 2: Place each function into the appropriate category on the chart.
### Chart:
[tex]\[ \begin{array}{|l|l|} \hline \pi & 2\pi \\ \hline y = 5 \cot \pi - 8 & y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \\ y = -\frac{1}{3} \csc 2x & \\ y = 5 \sec (2x + 2\pi) & \\ y = -6 \cot x - 10 & \\ & \\ \hline \end{array} \][/tex]
### Final Result:
[tex]\[ \begin{array}{|l|l|} \hline \pi & 2\pi \\ \hline y = 5 \cot \pi - 8 & y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \\ y = -\frac{1}{3} \csc 2x & \\ y = 5 \sec (2x + 2\pi) & \\ y = -6 \cot x - 10 & \\ & \\ \hline \end{array} \][/tex]
In summary, the functions have been matched with their respective periods as follows:
- \(\pi\):
- \( y = 5 \cot \pi - 8 \)
- \( y = -\frac{1}{3} \csc 2 x \)
- \( y = 5 \sec (2 x + 2 \pi) \)
- \( y = -6 \cot x - 10 \)
- \(2\pi\):
- \( y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \)
The function [tex]\( y = -3 \tan \frac{x}{2} \)[/tex] was assigned a period of [tex]\(4\pi\)[/tex] earlier and is not included in the [tex]\(\pi\)[/tex] or [tex]\(2\pi\)[/tex] columns.
Step 1: Identify the periods of each function based on the given results:
1. \( y = 5 \cot \pi - 8 \) has a period of \(\pi\).
2. \( y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \) has a period of \(2\pi\).
3. \( y = -\frac{1}{3} \csc 2x \) has a period of \(\pi\).
4. \( y = 5 \sec (2x + 2\pi) \) has a period of \(\pi\).
5. \( y = -6 \cot x - 10 \) has a period of \(\pi\).
6. \( y = -3 \tan \frac{x}{2} \) has a period of \(4\pi\).
Step 2: Place each function into the appropriate category on the chart.
### Chart:
[tex]\[ \begin{array}{|l|l|} \hline \pi & 2\pi \\ \hline y = 5 \cot \pi - 8 & y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \\ y = -\frac{1}{3} \csc 2x & \\ y = 5 \sec (2x + 2\pi) & \\ y = -6 \cot x - 10 & \\ & \\ \hline \end{array} \][/tex]
### Final Result:
[tex]\[ \begin{array}{|l|l|} \hline \pi & 2\pi \\ \hline y = 5 \cot \pi - 8 & y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \\ y = -\frac{1}{3} \csc 2x & \\ y = 5 \sec (2x + 2\pi) & \\ y = -6 \cot x - 10 & \\ & \\ \hline \end{array} \][/tex]
In summary, the functions have been matched with their respective periods as follows:
- \(\pi\):
- \( y = 5 \cot \pi - 8 \)
- \( y = -\frac{1}{3} \csc 2 x \)
- \( y = 5 \sec (2 x + 2 \pi) \)
- \( y = -6 \cot x - 10 \)
- \(2\pi\):
- \( y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \)
The function [tex]\( y = -3 \tan \frac{x}{2} \)[/tex] was assigned a period of [tex]\(4\pi\)[/tex] earlier and is not included in the [tex]\(\pi\)[/tex] or [tex]\(2\pi\)[/tex] columns.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.