Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To match each function with its respective period, follow these steps:
Step 1: Identify the periods of each function based on the given results:
1. \( y = 5 \cot \pi - 8 \) has a period of \(\pi\).
2. \( y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \) has a period of \(2\pi\).
3. \( y = -\frac{1}{3} \csc 2x \) has a period of \(\pi\).
4. \( y = 5 \sec (2x + 2\pi) \) has a period of \(\pi\).
5. \( y = -6 \cot x - 10 \) has a period of \(\pi\).
6. \( y = -3 \tan \frac{x}{2} \) has a period of \(4\pi\).
Step 2: Place each function into the appropriate category on the chart.
### Chart:
[tex]\[ \begin{array}{|l|l|} \hline \pi & 2\pi \\ \hline y = 5 \cot \pi - 8 & y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \\ y = -\frac{1}{3} \csc 2x & \\ y = 5 \sec (2x + 2\pi) & \\ y = -6 \cot x - 10 & \\ & \\ \hline \end{array} \][/tex]
### Final Result:
[tex]\[ \begin{array}{|l|l|} \hline \pi & 2\pi \\ \hline y = 5 \cot \pi - 8 & y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \\ y = -\frac{1}{3} \csc 2x & \\ y = 5 \sec (2x + 2\pi) & \\ y = -6 \cot x - 10 & \\ & \\ \hline \end{array} \][/tex]
In summary, the functions have been matched with their respective periods as follows:
- \(\pi\):
- \( y = 5 \cot \pi - 8 \)
- \( y = -\frac{1}{3} \csc 2 x \)
- \( y = 5 \sec (2 x + 2 \pi) \)
- \( y = -6 \cot x - 10 \)
- \(2\pi\):
- \( y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \)
The function [tex]\( y = -3 \tan \frac{x}{2} \)[/tex] was assigned a period of [tex]\(4\pi\)[/tex] earlier and is not included in the [tex]\(\pi\)[/tex] or [tex]\(2\pi\)[/tex] columns.
Step 1: Identify the periods of each function based on the given results:
1. \( y = 5 \cot \pi - 8 \) has a period of \(\pi\).
2. \( y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \) has a period of \(2\pi\).
3. \( y = -\frac{1}{3} \csc 2x \) has a period of \(\pi\).
4. \( y = 5 \sec (2x + 2\pi) \) has a period of \(\pi\).
5. \( y = -6 \cot x - 10 \) has a period of \(\pi\).
6. \( y = -3 \tan \frac{x}{2} \) has a period of \(4\pi\).
Step 2: Place each function into the appropriate category on the chart.
### Chart:
[tex]\[ \begin{array}{|l|l|} \hline \pi & 2\pi \\ \hline y = 5 \cot \pi - 8 & y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \\ y = -\frac{1}{3} \csc 2x & \\ y = 5 \sec (2x + 2\pi) & \\ y = -6 \cot x - 10 & \\ & \\ \hline \end{array} \][/tex]
### Final Result:
[tex]\[ \begin{array}{|l|l|} \hline \pi & 2\pi \\ \hline y = 5 \cot \pi - 8 & y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \\ y = -\frac{1}{3} \csc 2x & \\ y = 5 \sec (2x + 2\pi) & \\ y = -6 \cot x - 10 & \\ & \\ \hline \end{array} \][/tex]
In summary, the functions have been matched with their respective periods as follows:
- \(\pi\):
- \( y = 5 \cot \pi - 8 \)
- \( y = -\frac{1}{3} \csc 2 x \)
- \( y = 5 \sec (2 x + 2 \pi) \)
- \( y = -6 \cot x - 10 \)
- \(2\pi\):
- \( y = \frac{2}{5} \sin \left( \frac{2}{z} - \pi \right) \)
The function [tex]\( y = -3 \tan \frac{x}{2} \)[/tex] was assigned a period of [tex]\(4\pi\)[/tex] earlier and is not included in the [tex]\(\pi\)[/tex] or [tex]\(2\pi\)[/tex] columns.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.