At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the limit \(\lim_{x \to 0} \frac{(e^x - 1) \tan{x}}{x^2}\), we will use a detailed step-by-step approach.
### Step 1: Understand the Components
We need to find the limit of the function \(\frac{(e^x - 1) \tan{x}}{x^2}\) as \(x\) approaches 0.
### Step 2: Break Down the Expression
Firstly, let's analyze the individual components of the expression:
- \(e^x - 1\)
- \(\tan{x}\)
- \(x^2\)
### Step 3: Use Series Expansions
For small values of \(x\), we can use the series expansions of these functions to approximate their behavior near 0.
- The Taylor series expansion for \(e^x\) around \(x = 0\) is:
[tex]\[ e^x \approx 1 + x + \frac{x^2}{2!} + O(x^3) \][/tex]
Hence,
[tex]\[ e^x - 1 \approx x + \frac{x^2}{2} + O(x^3) \][/tex]
- The Taylor series expansion for \(\tan{x}\) around \(x = 0\) is:
[tex]\[ \tan{x} \approx x + \frac{x^3}{3} + O(x^5) \][/tex]
### Step 4: Substitute the Series Expansions
Now, substitute these series expansions into the original limit expression:
[tex]\[ \frac{(e^x - 1) \tan{x}}{x^2} \approx \frac{\left(x + \frac{x^2}{2} + O(x^3)\right) \left(x + \frac{x^3}{3} + O(x^5)\right)}{x^2} \][/tex]
### Step 5: Simplify the Expression
Let's multiply the series expansions in the numerator:
[tex]\[ \left(x + \frac{x^2}{2}\right) \left(x + \frac{x^3}{3}\right) \approx x^2 + \frac{x^4}{3} + \frac{x^2 \cdot x}{2} + O(x^5) \][/tex]
[tex]\[ = x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5) \][/tex]
Now, divide each term in the numerator by \(x^2\):
[tex]\[ \frac{x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5)}{x^2} = 1 + \frac{x}{2} + \frac{x^2}{3} + O(x^3) \][/tex]
### Step 6: Evaluate the Limit
As \(x \to 0\), all the higher-order terms \(O(x)\), \(O(x^2)\), etc., will approach 0. Hence, the dominant term is just 1.
Therefore,
[tex]\[ \lim_{x \to 0} \frac{(e^x - 1) \tan{x}}{x^2} = 1 \][/tex]
So the limit is [tex]\(\boxed{1}\)[/tex].
### Step 1: Understand the Components
We need to find the limit of the function \(\frac{(e^x - 1) \tan{x}}{x^2}\) as \(x\) approaches 0.
### Step 2: Break Down the Expression
Firstly, let's analyze the individual components of the expression:
- \(e^x - 1\)
- \(\tan{x}\)
- \(x^2\)
### Step 3: Use Series Expansions
For small values of \(x\), we can use the series expansions of these functions to approximate their behavior near 0.
- The Taylor series expansion for \(e^x\) around \(x = 0\) is:
[tex]\[ e^x \approx 1 + x + \frac{x^2}{2!} + O(x^3) \][/tex]
Hence,
[tex]\[ e^x - 1 \approx x + \frac{x^2}{2} + O(x^3) \][/tex]
- The Taylor series expansion for \(\tan{x}\) around \(x = 0\) is:
[tex]\[ \tan{x} \approx x + \frac{x^3}{3} + O(x^5) \][/tex]
### Step 4: Substitute the Series Expansions
Now, substitute these series expansions into the original limit expression:
[tex]\[ \frac{(e^x - 1) \tan{x}}{x^2} \approx \frac{\left(x + \frac{x^2}{2} + O(x^3)\right) \left(x + \frac{x^3}{3} + O(x^5)\right)}{x^2} \][/tex]
### Step 5: Simplify the Expression
Let's multiply the series expansions in the numerator:
[tex]\[ \left(x + \frac{x^2}{2}\right) \left(x + \frac{x^3}{3}\right) \approx x^2 + \frac{x^4}{3} + \frac{x^2 \cdot x}{2} + O(x^5) \][/tex]
[tex]\[ = x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5) \][/tex]
Now, divide each term in the numerator by \(x^2\):
[tex]\[ \frac{x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5)}{x^2} = 1 + \frac{x}{2} + \frac{x^2}{3} + O(x^3) \][/tex]
### Step 6: Evaluate the Limit
As \(x \to 0\), all the higher-order terms \(O(x)\), \(O(x^2)\), etc., will approach 0. Hence, the dominant term is just 1.
Therefore,
[tex]\[ \lim_{x \to 0} \frac{(e^x - 1) \tan{x}}{x^2} = 1 \][/tex]
So the limit is [tex]\(\boxed{1}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.