Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the limit \(\lim_{x \to 0} \frac{(e^x - 1) \tan{x}}{x^2}\), we will use a detailed step-by-step approach.
### Step 1: Understand the Components
We need to find the limit of the function \(\frac{(e^x - 1) \tan{x}}{x^2}\) as \(x\) approaches 0.
### Step 2: Break Down the Expression
Firstly, let's analyze the individual components of the expression:
- \(e^x - 1\)
- \(\tan{x}\)
- \(x^2\)
### Step 3: Use Series Expansions
For small values of \(x\), we can use the series expansions of these functions to approximate their behavior near 0.
- The Taylor series expansion for \(e^x\) around \(x = 0\) is:
[tex]\[ e^x \approx 1 + x + \frac{x^2}{2!} + O(x^3) \][/tex]
Hence,
[tex]\[ e^x - 1 \approx x + \frac{x^2}{2} + O(x^3) \][/tex]
- The Taylor series expansion for \(\tan{x}\) around \(x = 0\) is:
[tex]\[ \tan{x} \approx x + \frac{x^3}{3} + O(x^5) \][/tex]
### Step 4: Substitute the Series Expansions
Now, substitute these series expansions into the original limit expression:
[tex]\[ \frac{(e^x - 1) \tan{x}}{x^2} \approx \frac{\left(x + \frac{x^2}{2} + O(x^3)\right) \left(x + \frac{x^3}{3} + O(x^5)\right)}{x^2} \][/tex]
### Step 5: Simplify the Expression
Let's multiply the series expansions in the numerator:
[tex]\[ \left(x + \frac{x^2}{2}\right) \left(x + \frac{x^3}{3}\right) \approx x^2 + \frac{x^4}{3} + \frac{x^2 \cdot x}{2} + O(x^5) \][/tex]
[tex]\[ = x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5) \][/tex]
Now, divide each term in the numerator by \(x^2\):
[tex]\[ \frac{x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5)}{x^2} = 1 + \frac{x}{2} + \frac{x^2}{3} + O(x^3) \][/tex]
### Step 6: Evaluate the Limit
As \(x \to 0\), all the higher-order terms \(O(x)\), \(O(x^2)\), etc., will approach 0. Hence, the dominant term is just 1.
Therefore,
[tex]\[ \lim_{x \to 0} \frac{(e^x - 1) \tan{x}}{x^2} = 1 \][/tex]
So the limit is [tex]\(\boxed{1}\)[/tex].
### Step 1: Understand the Components
We need to find the limit of the function \(\frac{(e^x - 1) \tan{x}}{x^2}\) as \(x\) approaches 0.
### Step 2: Break Down the Expression
Firstly, let's analyze the individual components of the expression:
- \(e^x - 1\)
- \(\tan{x}\)
- \(x^2\)
### Step 3: Use Series Expansions
For small values of \(x\), we can use the series expansions of these functions to approximate their behavior near 0.
- The Taylor series expansion for \(e^x\) around \(x = 0\) is:
[tex]\[ e^x \approx 1 + x + \frac{x^2}{2!} + O(x^3) \][/tex]
Hence,
[tex]\[ e^x - 1 \approx x + \frac{x^2}{2} + O(x^3) \][/tex]
- The Taylor series expansion for \(\tan{x}\) around \(x = 0\) is:
[tex]\[ \tan{x} \approx x + \frac{x^3}{3} + O(x^5) \][/tex]
### Step 4: Substitute the Series Expansions
Now, substitute these series expansions into the original limit expression:
[tex]\[ \frac{(e^x - 1) \tan{x}}{x^2} \approx \frac{\left(x + \frac{x^2}{2} + O(x^3)\right) \left(x + \frac{x^3}{3} + O(x^5)\right)}{x^2} \][/tex]
### Step 5: Simplify the Expression
Let's multiply the series expansions in the numerator:
[tex]\[ \left(x + \frac{x^2}{2}\right) \left(x + \frac{x^3}{3}\right) \approx x^2 + \frac{x^4}{3} + \frac{x^2 \cdot x}{2} + O(x^5) \][/tex]
[tex]\[ = x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5) \][/tex]
Now, divide each term in the numerator by \(x^2\):
[tex]\[ \frac{x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5)}{x^2} = 1 + \frac{x}{2} + \frac{x^2}{3} + O(x^3) \][/tex]
### Step 6: Evaluate the Limit
As \(x \to 0\), all the higher-order terms \(O(x)\), \(O(x^2)\), etc., will approach 0. Hence, the dominant term is just 1.
Therefore,
[tex]\[ \lim_{x \to 0} \frac{(e^x - 1) \tan{x}}{x^2} = 1 \][/tex]
So the limit is [tex]\(\boxed{1}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.