Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's carefully analyze the given question and tables in order to draw a proper conclusion.
We have the following tables for \( f(x) \) and \( f^{-1}(x) \):
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline x & 0 & 1 & 2 \\ \hline f(x) & 1 & 10 & 100 \\ \hline \end{tabular} \][/tex]
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline x & 1000 & 100 & 10 \\ \hline f^{-1}(x) & 3 & 2 & 1 \\ \hline \end{tabular} \][/tex]
Let's examine the data step-by-step:
1. Values of \( f(x) \):
- When \( x = 0 \), \( f(x) = 1 \)
- When \( x = 1 \), \( f(x) = 10 \)
- When \( x = 2 \), \( f(x) = 100 \)
So, the function \( f(x) \) gives us the points: (0, 1), (1, 10), and (2, 100). Therefore, the range of \( f(x) \) is the set of all \( y \)-values: \( \{1, 10, 100\} \).
2. Values of \( f^{-1}(x) \):
- When \( x = 1000 \), \( f^{-1}(x) = 3 \)
- When \( x = 100 \), \( f^{-1}(x) = 2 \)
- When \( x = 10 \), \( f^{-1}(x) = 1 \)
So, the inverse function \( f^{-1}(x) \) provides us with the points: (1000, 3), (100, 2), and (10, 1). For \( f^{-1}(x) \), the domain consists of these \( x \)-values: \( \{1000, 100, 10\} \).
3. Relationship Between \( f \) and \( f^{-1} \):
- \( f(x) = y \) implies \( f^{-1}(y) = x \)
- To verify the correctness of this, we should check if the \( y \)-values obtained from \( f(x) \) match the \( x \)-values in \( f^{-1}(x) \) and vice versa:
- The range of \( f(x) \) is \( \{1, 10, 100\} \), and the domain values for \( f^{-1}(x) \) are \( \{1000, 100, 10\} \).
4. Verifying the Domain of \( f^{-1}(x) \):
- To confirm consistency, check that every entry in the range of \( f(x) \) is covered in the domain of \( f^{-1}(x) \). Here, the values \( 1, 10, \) and \( 100 \) are rightly covered by the \( x \)-values found in the table of \( f^{-1}(x) \).
Based on this analysis, we deduce the following conclusion:
The range of \( f(x) \) includes values such that \( y \geq 1 \). These values encompass \( y = 1, 10, \) and \( 100 \). Therefore, the domain of \( f^{-1}(x) \) must include values such that \( x \geq 1 \).
Hence, the accurate conclusion from the given data is:
"The range of [tex]\( f(x) \)[/tex] includes values such that [tex]\( y \geq 1 \)[/tex], so the domain of [tex]\( f^{-1}(x) \)[/tex] includes values such that [tex]\( x \geq 1 \)[/tex]."
We have the following tables for \( f(x) \) and \( f^{-1}(x) \):
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline x & 0 & 1 & 2 \\ \hline f(x) & 1 & 10 & 100 \\ \hline \end{tabular} \][/tex]
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline x & 1000 & 100 & 10 \\ \hline f^{-1}(x) & 3 & 2 & 1 \\ \hline \end{tabular} \][/tex]
Let's examine the data step-by-step:
1. Values of \( f(x) \):
- When \( x = 0 \), \( f(x) = 1 \)
- When \( x = 1 \), \( f(x) = 10 \)
- When \( x = 2 \), \( f(x) = 100 \)
So, the function \( f(x) \) gives us the points: (0, 1), (1, 10), and (2, 100). Therefore, the range of \( f(x) \) is the set of all \( y \)-values: \( \{1, 10, 100\} \).
2. Values of \( f^{-1}(x) \):
- When \( x = 1000 \), \( f^{-1}(x) = 3 \)
- When \( x = 100 \), \( f^{-1}(x) = 2 \)
- When \( x = 10 \), \( f^{-1}(x) = 1 \)
So, the inverse function \( f^{-1}(x) \) provides us with the points: (1000, 3), (100, 2), and (10, 1). For \( f^{-1}(x) \), the domain consists of these \( x \)-values: \( \{1000, 100, 10\} \).
3. Relationship Between \( f \) and \( f^{-1} \):
- \( f(x) = y \) implies \( f^{-1}(y) = x \)
- To verify the correctness of this, we should check if the \( y \)-values obtained from \( f(x) \) match the \( x \)-values in \( f^{-1}(x) \) and vice versa:
- The range of \( f(x) \) is \( \{1, 10, 100\} \), and the domain values for \( f^{-1}(x) \) are \( \{1000, 100, 10\} \).
4. Verifying the Domain of \( f^{-1}(x) \):
- To confirm consistency, check that every entry in the range of \( f(x) \) is covered in the domain of \( f^{-1}(x) \). Here, the values \( 1, 10, \) and \( 100 \) are rightly covered by the \( x \)-values found in the table of \( f^{-1}(x) \).
Based on this analysis, we deduce the following conclusion:
The range of \( f(x) \) includes values such that \( y \geq 1 \). These values encompass \( y = 1, 10, \) and \( 100 \). Therefore, the domain of \( f^{-1}(x) \) must include values such that \( x \geq 1 \).
Hence, the accurate conclusion from the given data is:
"The range of [tex]\( f(x) \)[/tex] includes values such that [tex]\( y \geq 1 \)[/tex], so the domain of [tex]\( f^{-1}(x) \)[/tex] includes values such that [tex]\( x \geq 1 \)[/tex]."
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.