Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's carefully analyze the given question and tables in order to draw a proper conclusion.
We have the following tables for \( f(x) \) and \( f^{-1}(x) \):
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline x & 0 & 1 & 2 \\ \hline f(x) & 1 & 10 & 100 \\ \hline \end{tabular} \][/tex]
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline x & 1000 & 100 & 10 \\ \hline f^{-1}(x) & 3 & 2 & 1 \\ \hline \end{tabular} \][/tex]
Let's examine the data step-by-step:
1. Values of \( f(x) \):
- When \( x = 0 \), \( f(x) = 1 \)
- When \( x = 1 \), \( f(x) = 10 \)
- When \( x = 2 \), \( f(x) = 100 \)
So, the function \( f(x) \) gives us the points: (0, 1), (1, 10), and (2, 100). Therefore, the range of \( f(x) \) is the set of all \( y \)-values: \( \{1, 10, 100\} \).
2. Values of \( f^{-1}(x) \):
- When \( x = 1000 \), \( f^{-1}(x) = 3 \)
- When \( x = 100 \), \( f^{-1}(x) = 2 \)
- When \( x = 10 \), \( f^{-1}(x) = 1 \)
So, the inverse function \( f^{-1}(x) \) provides us with the points: (1000, 3), (100, 2), and (10, 1). For \( f^{-1}(x) \), the domain consists of these \( x \)-values: \( \{1000, 100, 10\} \).
3. Relationship Between \( f \) and \( f^{-1} \):
- \( f(x) = y \) implies \( f^{-1}(y) = x \)
- To verify the correctness of this, we should check if the \( y \)-values obtained from \( f(x) \) match the \( x \)-values in \( f^{-1}(x) \) and vice versa:
- The range of \( f(x) \) is \( \{1, 10, 100\} \), and the domain values for \( f^{-1}(x) \) are \( \{1000, 100, 10\} \).
4. Verifying the Domain of \( f^{-1}(x) \):
- To confirm consistency, check that every entry in the range of \( f(x) \) is covered in the domain of \( f^{-1}(x) \). Here, the values \( 1, 10, \) and \( 100 \) are rightly covered by the \( x \)-values found in the table of \( f^{-1}(x) \).
Based on this analysis, we deduce the following conclusion:
The range of \( f(x) \) includes values such that \( y \geq 1 \). These values encompass \( y = 1, 10, \) and \( 100 \). Therefore, the domain of \( f^{-1}(x) \) must include values such that \( x \geq 1 \).
Hence, the accurate conclusion from the given data is:
"The range of [tex]\( f(x) \)[/tex] includes values such that [tex]\( y \geq 1 \)[/tex], so the domain of [tex]\( f^{-1}(x) \)[/tex] includes values such that [tex]\( x \geq 1 \)[/tex]."
We have the following tables for \( f(x) \) and \( f^{-1}(x) \):
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline x & 0 & 1 & 2 \\ \hline f(x) & 1 & 10 & 100 \\ \hline \end{tabular} \][/tex]
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline x & 1000 & 100 & 10 \\ \hline f^{-1}(x) & 3 & 2 & 1 \\ \hline \end{tabular} \][/tex]
Let's examine the data step-by-step:
1. Values of \( f(x) \):
- When \( x = 0 \), \( f(x) = 1 \)
- When \( x = 1 \), \( f(x) = 10 \)
- When \( x = 2 \), \( f(x) = 100 \)
So, the function \( f(x) \) gives us the points: (0, 1), (1, 10), and (2, 100). Therefore, the range of \( f(x) \) is the set of all \( y \)-values: \( \{1, 10, 100\} \).
2. Values of \( f^{-1}(x) \):
- When \( x = 1000 \), \( f^{-1}(x) = 3 \)
- When \( x = 100 \), \( f^{-1}(x) = 2 \)
- When \( x = 10 \), \( f^{-1}(x) = 1 \)
So, the inverse function \( f^{-1}(x) \) provides us with the points: (1000, 3), (100, 2), and (10, 1). For \( f^{-1}(x) \), the domain consists of these \( x \)-values: \( \{1000, 100, 10\} \).
3. Relationship Between \( f \) and \( f^{-1} \):
- \( f(x) = y \) implies \( f^{-1}(y) = x \)
- To verify the correctness of this, we should check if the \( y \)-values obtained from \( f(x) \) match the \( x \)-values in \( f^{-1}(x) \) and vice versa:
- The range of \( f(x) \) is \( \{1, 10, 100\} \), and the domain values for \( f^{-1}(x) \) are \( \{1000, 100, 10\} \).
4. Verifying the Domain of \( f^{-1}(x) \):
- To confirm consistency, check that every entry in the range of \( f(x) \) is covered in the domain of \( f^{-1}(x) \). Here, the values \( 1, 10, \) and \( 100 \) are rightly covered by the \( x \)-values found in the table of \( f^{-1}(x) \).
Based on this analysis, we deduce the following conclusion:
The range of \( f(x) \) includes values such that \( y \geq 1 \). These values encompass \( y = 1, 10, \) and \( 100 \). Therefore, the domain of \( f^{-1}(x) \) must include values such that \( x \geq 1 \).
Hence, the accurate conclusion from the given data is:
"The range of [tex]\( f(x) \)[/tex] includes values such that [tex]\( y \geq 1 \)[/tex], so the domain of [tex]\( f^{-1}(x) \)[/tex] includes values such that [tex]\( x \geq 1 \)[/tex]."
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.