Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve for the volume of the oblique pyramid with a square base and given parameters, we will follow these steps meticulously:
1. Calculate the area of the square base:
- The edge length of the square base is given as \(2 \text{ cm}\).
- The area \(A_{\text{base}}\) of a square with side length \(a\) is given by \(a^2\).
- Therefore, \(A_{\text{base}} = 2 \text{ cm} \times 2 \text{ cm} = 4 \text{ cm}^2\).
2. Determine the height of the pyramid:
- The pyramid's height can be calculated using trigonometry from the given angle \( \angle BAC = 45^\circ \).
- Since \(\angle BAC = 45^\circ\) and the square base has a length of \(2 \text{ cm}\), we can use the tangent function.
- For height \(h\), it can be computed using the formula \( h = \frac{\text{opposite side}}{\tan(\text{angle})} \).
3. Plug in the values:
- The opposite side in this case is half the edge length of the square base, i.e., \(\frac{2}{2} = 1 \text{ cm}\).
- The angle is \(45^\circ\).
- Thus, \( h = \frac{1 \text{ cm}}{\tan(45^\circ)} \).
- Knowing that \(\tan(45^\circ) = 1\):
- \( h = \frac{1 \text{ cm}}{1} = 1 \text{ cm} \).
4. Calculate the volume of the pyramid:
- The volume \(V\) of a pyramid is given by \( \frac{1}{3} A_{\text{base}} \times h \).
- Substitute the area of the base and the height:
[tex]\[ V = \frac{1}{3} \times 4 \text{ cm}^2 \times 1 \text{ cm} \][/tex]
[tex]\[ V = \frac{1}{3} \times 4 \text{ cm}^3 \][/tex]
[tex]\[ V = \frac{4}{3} \text{ cm}^3 \][/tex]
5. Simplify the volume:
- \(\frac{4}{3}\) in decimal form is approximately \(1.333\).
6. Match the volume to the given choices:
- The volume is approximately \(1.333 \text{ cm}^3\).
- None of the given options exactly match this volume.
Given the choices:
- \(2.4 \text{ cm}^3\)
- \(3.6 \text{ cm}^3\)
- \(4.8 \text{ cm}^3\)
- \(7.2 \text{ cm}^3\)
None of these options match our calculated volume of roughly [tex]\(1.333 \text{ cm}^3\)[/tex]. This discrepancy means there may be a mistake in the understanding of the problem or the provided choices may be incorrect.
1. Calculate the area of the square base:
- The edge length of the square base is given as \(2 \text{ cm}\).
- The area \(A_{\text{base}}\) of a square with side length \(a\) is given by \(a^2\).
- Therefore, \(A_{\text{base}} = 2 \text{ cm} \times 2 \text{ cm} = 4 \text{ cm}^2\).
2. Determine the height of the pyramid:
- The pyramid's height can be calculated using trigonometry from the given angle \( \angle BAC = 45^\circ \).
- Since \(\angle BAC = 45^\circ\) and the square base has a length of \(2 \text{ cm}\), we can use the tangent function.
- For height \(h\), it can be computed using the formula \( h = \frac{\text{opposite side}}{\tan(\text{angle})} \).
3. Plug in the values:
- The opposite side in this case is half the edge length of the square base, i.e., \(\frac{2}{2} = 1 \text{ cm}\).
- The angle is \(45^\circ\).
- Thus, \( h = \frac{1 \text{ cm}}{\tan(45^\circ)} \).
- Knowing that \(\tan(45^\circ) = 1\):
- \( h = \frac{1 \text{ cm}}{1} = 1 \text{ cm} \).
4. Calculate the volume of the pyramid:
- The volume \(V\) of a pyramid is given by \( \frac{1}{3} A_{\text{base}} \times h \).
- Substitute the area of the base and the height:
[tex]\[ V = \frac{1}{3} \times 4 \text{ cm}^2 \times 1 \text{ cm} \][/tex]
[tex]\[ V = \frac{1}{3} \times 4 \text{ cm}^3 \][/tex]
[tex]\[ V = \frac{4}{3} \text{ cm}^3 \][/tex]
5. Simplify the volume:
- \(\frac{4}{3}\) in decimal form is approximately \(1.333\).
6. Match the volume to the given choices:
- The volume is approximately \(1.333 \text{ cm}^3\).
- None of the given options exactly match this volume.
Given the choices:
- \(2.4 \text{ cm}^3\)
- \(3.6 \text{ cm}^3\)
- \(4.8 \text{ cm}^3\)
- \(7.2 \text{ cm}^3\)
None of these options match our calculated volume of roughly [tex]\(1.333 \text{ cm}^3\)[/tex]. This discrepancy means there may be a mistake in the understanding of the problem or the provided choices may be incorrect.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.