Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Alright, let's carefully examine the situation step-by-step with the given data and fill in the sentences appropriately.
### Step-by-Step Solution:
1. Determine Initial Conditions:
- Mass of Glider 1 (m1) = 0.5 kg
- Mass of Glider 2 (m2) = 0.8 kg
- Velocity of Glider 1 before collision (v1_before) = 3.00 m/s
- Velocity of Glider 2 before collision (v2_before) = -3.00 m/s
2. Calculate Momenta Before Collision:
- Momentum of Glider 1 before collision (p1_before) = m1 v1_before = 0.5 kg 3.00 m/s = 1.50 kg·m/s
- Momentum of Glider 2 before collision (p2_before) = m2 v2_before = 0.8 kg (-3.00 m/s) = -2.40 kg·m/s
3. Total Momentum Before Collision:
- Total momentum before collision = p1_before + p2_before = 1.50 kg·m/s + (-2.40 kg·m/s) = -0.90 kg·m/s
4. Conditions After Collision:
- Total mass after collision = m1 + m2 = 1.3 kg
- Velocity after collision (v_after) = -0.69 m/s
- Total momentum after collision (from the table) = -0.90 kg·m/s
5. Compare Directions:
After the collision, the gliders move together with a velocity of -0.69 m/s.
- Since the velocity after collision is negative, they travel in the same direction as Glider 1 before the collision (Glider 1 had a positive momentum, meaning it was initially moving in a positive direction before collision).
6. Magnitude of Velocity:
- The magnitude of the post-collision velocity (-0.69) is less than the velocity of Glider 1 before the collision (3.00 m/s).
7. Momentum Comparison:
- The momentum magnitude of Glider 2 before the collision (| -2.40 |) is greater than Glider 1 (| 1.50 |) because its mass is greater.
8. Percent Difference Between Total Momentum Before and After Collision:
- The calculated percent difference was found to be approximately \(3.700743415417187 \times 10^{-14} \%\), which is extremely close to zero, indicating conservation of momentum within a very small error margin.
### Filling in the Sentences:
After colliding, [tex]\( G1 + G2 \)[/tex] travels in a negative direction as [tex]\( G1 \)[/tex] travels before the collision, but at about one-fourth the magnitude in velocity. The initial momentum of [tex]\( G2 \)[/tex] (the magnitude or absolute value) is greater than [tex]\( G1 \)[/tex] because its mass is greater than [tex]\( G1 \)[/tex]. The percent difference between the total momentum before and after the collision is 3.700743415417187 \times 10^{-14} %.
### Step-by-Step Solution:
1. Determine Initial Conditions:
- Mass of Glider 1 (m1) = 0.5 kg
- Mass of Glider 2 (m2) = 0.8 kg
- Velocity of Glider 1 before collision (v1_before) = 3.00 m/s
- Velocity of Glider 2 before collision (v2_before) = -3.00 m/s
2. Calculate Momenta Before Collision:
- Momentum of Glider 1 before collision (p1_before) = m1 v1_before = 0.5 kg 3.00 m/s = 1.50 kg·m/s
- Momentum of Glider 2 before collision (p2_before) = m2 v2_before = 0.8 kg (-3.00 m/s) = -2.40 kg·m/s
3. Total Momentum Before Collision:
- Total momentum before collision = p1_before + p2_before = 1.50 kg·m/s + (-2.40 kg·m/s) = -0.90 kg·m/s
4. Conditions After Collision:
- Total mass after collision = m1 + m2 = 1.3 kg
- Velocity after collision (v_after) = -0.69 m/s
- Total momentum after collision (from the table) = -0.90 kg·m/s
5. Compare Directions:
After the collision, the gliders move together with a velocity of -0.69 m/s.
- Since the velocity after collision is negative, they travel in the same direction as Glider 1 before the collision (Glider 1 had a positive momentum, meaning it was initially moving in a positive direction before collision).
6. Magnitude of Velocity:
- The magnitude of the post-collision velocity (-0.69) is less than the velocity of Glider 1 before the collision (3.00 m/s).
7. Momentum Comparison:
- The momentum magnitude of Glider 2 before the collision (| -2.40 |) is greater than Glider 1 (| 1.50 |) because its mass is greater.
8. Percent Difference Between Total Momentum Before and After Collision:
- The calculated percent difference was found to be approximately \(3.700743415417187 \times 10^{-14} \%\), which is extremely close to zero, indicating conservation of momentum within a very small error margin.
### Filling in the Sentences:
After colliding, [tex]\( G1 + G2 \)[/tex] travels in a negative direction as [tex]\( G1 \)[/tex] travels before the collision, but at about one-fourth the magnitude in velocity. The initial momentum of [tex]\( G2 \)[/tex] (the magnitude or absolute value) is greater than [tex]\( G1 \)[/tex] because its mass is greater than [tex]\( G1 \)[/tex]. The percent difference between the total momentum before and after the collision is 3.700743415417187 \times 10^{-14} %.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.