Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the volume of the oblique pyramid with a square base, we can follow these steps:
1. Determine the area of the base:
Since the base is a square with an edge length of \(5 \, \text{cm}\), we calculate the area of the base as follows:
[tex]\[ \text{Base area} = \text{side}^2 = 5 \, \text{cm} \times 5 \, \text{cm} = 25 \, \text{cm}^2 \][/tex]
2. Calculate the volume of the pyramid:
The formula to calculate the volume \(V\) of a pyramid is given by:
[tex]\[ V = \frac{1}{3} \times \text{Base area} \times \text{Height} \][/tex]
Substituting the values we have:
[tex]\[ V = \frac{1}{3} \times 25 \, \text{cm}^2 \times 7 \, \text{cm} = \frac{1}{3} \times 175 \, \text{cm}^3 = \frac{175}{3} \, \text{cm}^3 \][/tex]
3. Convert the volume into a mixed number:
To convert \(\frac{175}{3}\) into a mixed number, we divide 175 by 3:
[tex]\[ 175 \div 3 = 58 \text{ remainder } 1 \][/tex]
Thus,
[tex]\[ \frac{175}{3} = 58 \frac{1}{3} \, \text{cm}^3 \][/tex]
4. Match with the given options:
Among the provided answer choices, the corresponding volume is:
[tex]\[ 58 \frac{1}{3} \, \text{cm}^3 \][/tex]
Therefore, the volume of the pyramid is:
[tex]\[ \boxed{58 \frac{1}{3} \, \text{cm}^3} \][/tex]
1. Determine the area of the base:
Since the base is a square with an edge length of \(5 \, \text{cm}\), we calculate the area of the base as follows:
[tex]\[ \text{Base area} = \text{side}^2 = 5 \, \text{cm} \times 5 \, \text{cm} = 25 \, \text{cm}^2 \][/tex]
2. Calculate the volume of the pyramid:
The formula to calculate the volume \(V\) of a pyramid is given by:
[tex]\[ V = \frac{1}{3} \times \text{Base area} \times \text{Height} \][/tex]
Substituting the values we have:
[tex]\[ V = \frac{1}{3} \times 25 \, \text{cm}^2 \times 7 \, \text{cm} = \frac{1}{3} \times 175 \, \text{cm}^3 = \frac{175}{3} \, \text{cm}^3 \][/tex]
3. Convert the volume into a mixed number:
To convert \(\frac{175}{3}\) into a mixed number, we divide 175 by 3:
[tex]\[ 175 \div 3 = 58 \text{ remainder } 1 \][/tex]
Thus,
[tex]\[ \frac{175}{3} = 58 \frac{1}{3} \, \text{cm}^3 \][/tex]
4. Match with the given options:
Among the provided answer choices, the corresponding volume is:
[tex]\[ 58 \frac{1}{3} \, \text{cm}^3 \][/tex]
Therefore, the volume of the pyramid is:
[tex]\[ \boxed{58 \frac{1}{3} \, \text{cm}^3} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.