Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Test Review

The table shows two linear functions and the function values for different values of [tex]$x$[/tex].

\begin{tabular}{|c|c|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)=2x+1$[/tex] & [tex]$g(x)=-x-3$[/tex] & [tex]$h(x)$[/tex] \\
\hline
-3 & -5 & 0 & 5 \\
\hline
2 & 5 & -5 & -10 \\
\hline
4 & 9 & -7 & -16 \\
\hline
\end{tabular}

Which expression represents [tex]$h(x)$[/tex]?

A. [tex]f(g(x))[/tex]

B. [tex](g+f)(x)[/tex]

C. [tex](f-g)(x)[/tex]

D. [tex](g-f)(x)[/tex]


Sagot :

Let's examine the given table and the expression that represents \( h(x) \) step-by-step.

We are provided with the following table:

[tex]\[ \begin{array}{|c|c|c|c|} \hline x & f(x) = 2x + 1 & g(x) = -x - 3 & h(x) \\ \hline -3 & -5 & 0 & 5 \\ \hline 2 & 5 & -5 & -10 \\ \hline 4 & 9 & -7 & -16 \\ \hline \end{array} \][/tex]

We need to determine which of the following expressions matches \( h(x) \):

1. \( (f + g)(x) \)
2. \( (g + f)(x) \)
3. \( (f - g)(x) \)
4. \( (g - f)(x) \)

To do this, we will evaluate each given expression step by step for the provided \( x \) values: \( -3, 2, \) and \( 4 \).

### Step-by-Step Calculation

1. \( (f + g)(x) \):

\( (f + g)(x) = (2x + 1) + (-x - 3) \)

[tex]\[ (f + g)(x) = 2x + 1 - x - 3 = x - 2 \][/tex]

Let's calculate \( (f + g)(x) \) for each \( x \):

- For \( x = -3 \): \( (f + g)(-3) = -3 - 2 = -5 \neq 5 \)
- For \( x = 2 \): \( (f + g)(2) = 2 - 2 = 0 \neq -10 \)
- For \( x = 4 \): \( (f + g)(4) = 4 - 2 = 2 \neq -16 \)

2. \( (g + f)(x) \):

This is just another notation of \( (f + g)(x) \). The results would be the same as above:
[tex]\[ (g + f)(x) = (f + g)(x) = x - 2 \][/tex]

3. \( (f - g)(x) \):

\( (f - g)(x) = (2x + 1) - (-x - 3) \)

[tex]\[ (f - g)(x) = 2x + 1 + x + 3 = 3x + 4 \][/tex]

Let's calculate \( (f - g)(x) \) for each \( x \):

- For \( x = -3 \): \( (f - g)(-3) = 3(-3) + 4 = -9 + 4 = -5 \neq 5 \)
- For \( x = 2 \): \( (f - g)(2) = 3(2) + 4 = 6 + 4 = 10 \neq -10 \)
- For \( x = 4 \): \( (f - g)(4) = 3(4) + 4 = 12 + 4 = 16 \neq -16 \)

4. \( (g - f)(x) \):

\( (g - f)(x) = (-x - 3) - (2x + 1) \)

[tex]\[ (g - f)(x) = -x - 3 - 2x - 1 = -3x - 4 \][/tex]

Let's calculate \( (g - f)(x) \) for each \( x \):

- For \( x = -3 \): \( (g - f)(-3) = -3(-3) - 4 = 9 - 4 = 5 = 5 \)
- For \( x = 2 \): \( (g - f)(2) = -3(2) - 4 = -6 - 4 = -10 = -10 \)
- For \( x = 4 \): \( (g - f)(4) = -3(4) - 4 = -12 - 4 = -16 = -16 \)

### Conclusion

The expression \( (g - f)(x) \) matches \( h(x) \) for all given \( x \) values.

Thus, the expression that represents [tex]\( h(x) \)[/tex] is [tex]\( (g - f)(x) \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.