Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Simplify the following expression:

[tex]\[ 3^x \times 9^{x+1} \div 3^{x-1} \times 9^{x-1} \][/tex]


Sagot :

Sure! Let's solve the given expression step-by-step:

Given expression:
[tex]\[ \frac{3^x \times 9^{x+1}}{3^{x-1} \times 9^{x-1}} \][/tex]

First, let's rewrite the terms involving 9 in terms of powers of 3. Recall that \( 9 = 3^2 \), so:
[tex]\[ 9^{x+1} = (3^2)^{x+1} = 3^{2(x+1)} = 3^{2x+2} \][/tex]
[tex]\[ 9^{x-1} = (3^2)^{x-1} = 3^{2(x-1)} = 3^{2x-2} \][/tex]

Now, let's substitute these back into the original expression:
[tex]\[ \frac{3^x \times 3^{2x+2}}{3^{x-1} \times 3^{2x-2}} \][/tex]

Next, combine the exponents in the numerator and the denominator. Using the property of exponents \(a^m \times a^n = a^{m+n}\):
[tex]\[ \text{Numerator: } 3^x \times 3^{2x+2} = 3^{x + 2x + 2} = 3^{3x + 2} \][/tex]
[tex]\[ \text{Denominator: } 3^{x-1} \times 3^{2x-2} = 3^{x - 1 + 2x - 2} = 3^{3x - 3} \][/tex]

Now, we have the expression:
[tex]\[ \frac{3^{3x + 2}}{3^{3x - 3}} \][/tex]

To divide powers with the same base, subtract the exponents:
[tex]\[ 3^{(3x + 2) - (3x - 3)} = 3^{3x + 2 - 3x + 3} = 3^{5} \][/tex]

Therefore, the expression simplifies to:
[tex]\[ 3^5 \][/tex]

And we know that:
[tex]\[ 3^5 = 243 \][/tex]

So, the final answer is [tex]\( 243 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.