Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure! Let's solve the given expression step-by-step:
Given expression:
[tex]\[ \frac{3^x \times 9^{x+1}}{3^{x-1} \times 9^{x-1}} \][/tex]
First, let's rewrite the terms involving 9 in terms of powers of 3. Recall that \( 9 = 3^2 \), so:
[tex]\[ 9^{x+1} = (3^2)^{x+1} = 3^{2(x+1)} = 3^{2x+2} \][/tex]
[tex]\[ 9^{x-1} = (3^2)^{x-1} = 3^{2(x-1)} = 3^{2x-2} \][/tex]
Now, let's substitute these back into the original expression:
[tex]\[ \frac{3^x \times 3^{2x+2}}{3^{x-1} \times 3^{2x-2}} \][/tex]
Next, combine the exponents in the numerator and the denominator. Using the property of exponents \(a^m \times a^n = a^{m+n}\):
[tex]\[ \text{Numerator: } 3^x \times 3^{2x+2} = 3^{x + 2x + 2} = 3^{3x + 2} \][/tex]
[tex]\[ \text{Denominator: } 3^{x-1} \times 3^{2x-2} = 3^{x - 1 + 2x - 2} = 3^{3x - 3} \][/tex]
Now, we have the expression:
[tex]\[ \frac{3^{3x + 2}}{3^{3x - 3}} \][/tex]
To divide powers with the same base, subtract the exponents:
[tex]\[ 3^{(3x + 2) - (3x - 3)} = 3^{3x + 2 - 3x + 3} = 3^{5} \][/tex]
Therefore, the expression simplifies to:
[tex]\[ 3^5 \][/tex]
And we know that:
[tex]\[ 3^5 = 243 \][/tex]
So, the final answer is [tex]\( 243 \)[/tex].
Given expression:
[tex]\[ \frac{3^x \times 9^{x+1}}{3^{x-1} \times 9^{x-1}} \][/tex]
First, let's rewrite the terms involving 9 in terms of powers of 3. Recall that \( 9 = 3^2 \), so:
[tex]\[ 9^{x+1} = (3^2)^{x+1} = 3^{2(x+1)} = 3^{2x+2} \][/tex]
[tex]\[ 9^{x-1} = (3^2)^{x-1} = 3^{2(x-1)} = 3^{2x-2} \][/tex]
Now, let's substitute these back into the original expression:
[tex]\[ \frac{3^x \times 3^{2x+2}}{3^{x-1} \times 3^{2x-2}} \][/tex]
Next, combine the exponents in the numerator and the denominator. Using the property of exponents \(a^m \times a^n = a^{m+n}\):
[tex]\[ \text{Numerator: } 3^x \times 3^{2x+2} = 3^{x + 2x + 2} = 3^{3x + 2} \][/tex]
[tex]\[ \text{Denominator: } 3^{x-1} \times 3^{2x-2} = 3^{x - 1 + 2x - 2} = 3^{3x - 3} \][/tex]
Now, we have the expression:
[tex]\[ \frac{3^{3x + 2}}{3^{3x - 3}} \][/tex]
To divide powers with the same base, subtract the exponents:
[tex]\[ 3^{(3x + 2) - (3x - 3)} = 3^{3x + 2 - 3x + 3} = 3^{5} \][/tex]
Therefore, the expression simplifies to:
[tex]\[ 3^5 \][/tex]
And we know that:
[tex]\[ 3^5 = 243 \][/tex]
So, the final answer is [tex]\( 243 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.