At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the problem step-by-step.
The goal is to find the probability that a randomly selected person from the survey is 8 to 12 years old, given that their favorite sport is baseball. This can be represented as:
[tex]\[ P (8-12 \text{ yrs} \mid \text{Baseball}) \][/tex]
### Step 1: Identify the Relevant Data
- The number of people aged 8 to 12 years old who favor baseball: 10
- The total number of people who favor baseball: 46
### Step 2: Setup the Conditional Probability Formula
The formula for conditional probability, \( P(A \mid B) \), is given by:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Here:
- \( A \) is the event that the person is aged 8 to 12 years.
- \( B \) is the event that the person's favorite sport is baseball.
This transforms the formula to:
[tex]\[ P(8-12 \text{ yrs} \mid \text{Baseball}) = \frac{\text{Number of people aged 8-12 years who like baseball}}{\text{Total number of people who like baseball}} \][/tex]
Substituting the given values:
[tex]\[ P(8-12 \text{ yrs} \mid \text{Baseball}) = \frac{10}{46} \][/tex]
### Step 3: Calculate the Probability
To find the probability as a percentage, multiply the fraction by 100:
[tex]\[ P(8-12 \text{ yrs} \mid \text{Baseball}) = \left(\frac{10}{46}\right) \times 100 \approx 21.7391\% \][/tex]
### Step 4: Round the Answer to the Nearest Whole Percent
Rounding 21.7391 to the nearest whole percent gives us:
[tex]\[ P(8-12 \text{ yrs} \mid \text{Baseball}) \approx 22\% \][/tex]
Therefore, the probability that a randomly selected person from this survey is 8 to 12 years old, given their favorite sport is baseball is approximately [tex]\( 22\% \)[/tex].
The goal is to find the probability that a randomly selected person from the survey is 8 to 12 years old, given that their favorite sport is baseball. This can be represented as:
[tex]\[ P (8-12 \text{ yrs} \mid \text{Baseball}) \][/tex]
### Step 1: Identify the Relevant Data
- The number of people aged 8 to 12 years old who favor baseball: 10
- The total number of people who favor baseball: 46
### Step 2: Setup the Conditional Probability Formula
The formula for conditional probability, \( P(A \mid B) \), is given by:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Here:
- \( A \) is the event that the person is aged 8 to 12 years.
- \( B \) is the event that the person's favorite sport is baseball.
This transforms the formula to:
[tex]\[ P(8-12 \text{ yrs} \mid \text{Baseball}) = \frac{\text{Number of people aged 8-12 years who like baseball}}{\text{Total number of people who like baseball}} \][/tex]
Substituting the given values:
[tex]\[ P(8-12 \text{ yrs} \mid \text{Baseball}) = \frac{10}{46} \][/tex]
### Step 3: Calculate the Probability
To find the probability as a percentage, multiply the fraction by 100:
[tex]\[ P(8-12 \text{ yrs} \mid \text{Baseball}) = \left(\frac{10}{46}\right) \times 100 \approx 21.7391\% \][/tex]
### Step 4: Round the Answer to the Nearest Whole Percent
Rounding 21.7391 to the nearest whole percent gives us:
[tex]\[ P(8-12 \text{ yrs} \mid \text{Baseball}) \approx 22\% \][/tex]
Therefore, the probability that a randomly selected person from this survey is 8 to 12 years old, given their favorite sport is baseball is approximately [tex]\( 22\% \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.