Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the point of the given function that corresponds to the minimum value of its inverse function, let's break down the problem step-by-step.
First, let's understand that we are dealing with a function \( f \) defined by the following points:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -10 & -20 & 0 & 5 & 8 \\ \hline f(x) & 3 & 8 & -2 & -4.5 & -6 \\ \hline \end{array} \][/tex]
### Step 1: Identify the minimum value of \( f(x) \)
We need to find the smallest value in the second row, which contains the values of \( f(x) \):
[tex]\[ 3, 8, -2, -4.5, -6 \][/tex]
Among these values, the minimum value is \(-6\).
### Step 2: Find the corresponding \( x \) value for the minimum \( f(x) \)
Now, we will look at the table to identify the \( x \) value that corresponds to \( f(x) = -6 \):
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -10 & -20 & 0 & 5 & 8 \\ \hline f(x) & 3 & 8 & -2 & -4.5 & -6 \\ \hline \end{array} \][/tex]
From the table, we see that \( f(8) = -6 \).
### Step 3: Determine the point for the function’s inverse
For the inverse function \( f^{-1} \), what pairs \((f(x), x)\). Given that the minimum \( f(x) \) is -6, the corresponding point on the inverse function will be \( (-6, 8) \).
Alternatively, we reverse the pair to refer back to the original function point it came from:
Given that \( f(8) = -6 \):
The original function point is \( (8, -6) \).
### Conclusion
Thus, the point [tex]\((8, -6)\)[/tex] in the given function corresponds to the minimum value of its inverse function. None of the points [tex]\((-20, 8)\)[/tex] or [tex]\((-10, 3)\)[/tex] correspond correctly here; the correct point is [tex]\((8, -6)\)[/tex].
First, let's understand that we are dealing with a function \( f \) defined by the following points:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -10 & -20 & 0 & 5 & 8 \\ \hline f(x) & 3 & 8 & -2 & -4.5 & -6 \\ \hline \end{array} \][/tex]
### Step 1: Identify the minimum value of \( f(x) \)
We need to find the smallest value in the second row, which contains the values of \( f(x) \):
[tex]\[ 3, 8, -2, -4.5, -6 \][/tex]
Among these values, the minimum value is \(-6\).
### Step 2: Find the corresponding \( x \) value for the minimum \( f(x) \)
Now, we will look at the table to identify the \( x \) value that corresponds to \( f(x) = -6 \):
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -10 & -20 & 0 & 5 & 8 \\ \hline f(x) & 3 & 8 & -2 & -4.5 & -6 \\ \hline \end{array} \][/tex]
From the table, we see that \( f(8) = -6 \).
### Step 3: Determine the point for the function’s inverse
For the inverse function \( f^{-1} \), what pairs \((f(x), x)\). Given that the minimum \( f(x) \) is -6, the corresponding point on the inverse function will be \( (-6, 8) \).
Alternatively, we reverse the pair to refer back to the original function point it came from:
Given that \( f(8) = -6 \):
The original function point is \( (8, -6) \).
### Conclusion
Thus, the point [tex]\((8, -6)\)[/tex] in the given function corresponds to the minimum value of its inverse function. None of the points [tex]\((-20, 8)\)[/tex] or [tex]\((-10, 3)\)[/tex] correspond correctly here; the correct point is [tex]\((8, -6)\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.