Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve for the square root of \(-28\), we need to handle the square root of a negative number, which involves imaginary numbers. Here's the step-by-step solution:
1. Identify the negative aspect:
The number under the square root is \(-28\), which is negative. We know that the square root of a negative number involves the imaginary unit \(i\), where \(i = \sqrt{-1}\).
2. Express the negative number using \(i\):
Rewrite \(-28\) as \(-1 \times 28\).
3. Separate the components under the square root:
Using the property of square roots that \(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\), we have:
[tex]\[ \sqrt{-28} = \sqrt{-1 \times 28} = \sqrt{-1} \times \sqrt{28} \][/tex]
4. Simplify the square root of \(-1\):
We know that \(\sqrt{-1} = i\).
5. Simplify the square root of \(28\):
The number \(28\) can be factored into its prime factors as \(28 = 4 \times 7\). Thus:
[tex]\[ \sqrt{28} = \sqrt{4 \times 7} = \sqrt{4} \times \sqrt{7} \][/tex]
Since \(\sqrt{4} = 2\), this simplifies to:
[tex]\[ \sqrt{28} = 2\sqrt{7} \][/tex]
6. Combine the results:
Now, substituting back into our expression, we have:
[tex]\[ \sqrt{-28} = \sqrt{-1} \times \sqrt{28} = i \times 2\sqrt{7} \][/tex]
7. Write the final answer:
Simplifying the multiplication gives us:
[tex]\[ \sqrt{-28} = 2\sqrt{7}i \][/tex]
Thus, the square root of [tex]\(-28\)[/tex] is [tex]\(2\sqrt{7}i\)[/tex].
1. Identify the negative aspect:
The number under the square root is \(-28\), which is negative. We know that the square root of a negative number involves the imaginary unit \(i\), where \(i = \sqrt{-1}\).
2. Express the negative number using \(i\):
Rewrite \(-28\) as \(-1 \times 28\).
3. Separate the components under the square root:
Using the property of square roots that \(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\), we have:
[tex]\[ \sqrt{-28} = \sqrt{-1 \times 28} = \sqrt{-1} \times \sqrt{28} \][/tex]
4. Simplify the square root of \(-1\):
We know that \(\sqrt{-1} = i\).
5. Simplify the square root of \(28\):
The number \(28\) can be factored into its prime factors as \(28 = 4 \times 7\). Thus:
[tex]\[ \sqrt{28} = \sqrt{4 \times 7} = \sqrt{4} \times \sqrt{7} \][/tex]
Since \(\sqrt{4} = 2\), this simplifies to:
[tex]\[ \sqrt{28} = 2\sqrt{7} \][/tex]
6. Combine the results:
Now, substituting back into our expression, we have:
[tex]\[ \sqrt{-28} = \sqrt{-1} \times \sqrt{28} = i \times 2\sqrt{7} \][/tex]
7. Write the final answer:
Simplifying the multiplication gives us:
[tex]\[ \sqrt{-28} = 2\sqrt{7}i \][/tex]
Thus, the square root of [tex]\(-28\)[/tex] is [tex]\(2\sqrt{7}i\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.