Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's balance each equation step by step:
### 1. Balancing the equation \( \square \text{SiO}_2 + \square \text{CaC}_2 \rightarrow \square \text{Si} + \square \text{CaO} + \square \text{CO}_2 \)
- First, let's count the number of each type of atom on both sides of the equation:
- On the left side:
- Silicon (Si): 1 Si in \( \text{SiO}_2 \)
- Oxygen (O): 2 O in \( \text{SiO}_2 \)
- Calcium (Ca): 1 Ca in \( \text{CaC}_2 \)
- Carbon (C): 2 C in \( \text{CaC}_2 \)
- On the right side:
- Silicon (Si): 1 Si
- Oxygen (O): 1 O in \( \text{CaO} \) + 2 O in \( \text{CO}_2 \) = 3 O
- Calcium (Ca): 1 Ca in \( \text{CaO} \)
- Carbon (C): 1 C in \( \text{CO}_2 \)
- From this, we see that the coefficients need to balance the equation as:
- \( 1 \text{SiO}_2 \) \( +1 \text{CaC}_2 \rightarrow 1 \text{Si} \) \( +1 \text{CaO} \) \( +1 \text{CO}_2 \)
Thus, the balanced equation is:
[tex]\[ 1 \text{SiO}_2 + 1 \text{CaC}_2 \rightarrow 1 \text{Si} + 1 \text{CaO} + 1 \text{CO}_2 \][/tex]
### 2. Balancing the equation \( \square \text{NH}_3 + \square \text{O}_2 \rightarrow \square \text{NO} + \square \text{H}_2\text{O} \)
- First, let's count the number of each type of atom on both sides of the equation:
- On the left side:
- Nitrogen (N): 1 N in \( \text{NH}_3 \)
- Hydrogen (H): 3 H in \( \text{NH}_3 \)
- Oxygen (O): 2 O in \( \text{O}_2 \)
- On the right side:
- Nitrogen (N): 1 N in \( \text{NO} \)
- Hydrogen (H): 2 H in \( \text{H}_2\text{O} \)
- Oxygen (O): 1 O in \( \text{NO} \) + 1 O in \( \text{H}_2\text{O} \) = 2 O
- To balance the equation:
- We see we need 2 molecules of \( \text{NH}_3 \) to have 2 Nitrogen and 6 Hydrogen.
- This gives us 2 \( \text{NO} \) on the right side.
- To balance the Hydrogen, we needed 3 molecules of \( \text{H}_2\text{O} \), which gives us 6 Hydrogen atoms.
- Finally, to balance Oxygen, we need 2.5 molecules of \( \text{O}_2 \), which gives us 5 Oxygen atoms, 2 of which combine to make 2 \( \text{NO} \) and 3 which combine with Hydrogen to make 3 \( \text{H}_2\text{O} \).
Thus, the balanced equation is:
[tex]\[ 2 \text{NH}_3 + 2.5 \text{O}_2 \rightarrow 2 \text{NO} + 3 \text{H}_2\text{O} \][/tex]
So the final coefficients are:
1. \(1 \text{SiO}_2\) \( + \) \(1 \text{CaC}_2\) \( \rightarrow \) \(1 \text{Si} \) \( + \) \(1 \text{CaO} \) \( + \) \(1 \text{CO}_2 \)
2. [tex]\(2 \text{NH}_3 \)[/tex] [tex]\( + \)[/tex] [tex]\(2.5 \text{O}_2 \)[/tex] [tex]\( \rightarrow \)[/tex] [tex]\(2 \text{NO} \)[/tex] [tex]\( + \)[/tex] [tex]\(3 \text{H}_2\text{O} \)[/tex]
### 1. Balancing the equation \( \square \text{SiO}_2 + \square \text{CaC}_2 \rightarrow \square \text{Si} + \square \text{CaO} + \square \text{CO}_2 \)
- First, let's count the number of each type of atom on both sides of the equation:
- On the left side:
- Silicon (Si): 1 Si in \( \text{SiO}_2 \)
- Oxygen (O): 2 O in \( \text{SiO}_2 \)
- Calcium (Ca): 1 Ca in \( \text{CaC}_2 \)
- Carbon (C): 2 C in \( \text{CaC}_2 \)
- On the right side:
- Silicon (Si): 1 Si
- Oxygen (O): 1 O in \( \text{CaO} \) + 2 O in \( \text{CO}_2 \) = 3 O
- Calcium (Ca): 1 Ca in \( \text{CaO} \)
- Carbon (C): 1 C in \( \text{CO}_2 \)
- From this, we see that the coefficients need to balance the equation as:
- \( 1 \text{SiO}_2 \) \( +1 \text{CaC}_2 \rightarrow 1 \text{Si} \) \( +1 \text{CaO} \) \( +1 \text{CO}_2 \)
Thus, the balanced equation is:
[tex]\[ 1 \text{SiO}_2 + 1 \text{CaC}_2 \rightarrow 1 \text{Si} + 1 \text{CaO} + 1 \text{CO}_2 \][/tex]
### 2. Balancing the equation \( \square \text{NH}_3 + \square \text{O}_2 \rightarrow \square \text{NO} + \square \text{H}_2\text{O} \)
- First, let's count the number of each type of atom on both sides of the equation:
- On the left side:
- Nitrogen (N): 1 N in \( \text{NH}_3 \)
- Hydrogen (H): 3 H in \( \text{NH}_3 \)
- Oxygen (O): 2 O in \( \text{O}_2 \)
- On the right side:
- Nitrogen (N): 1 N in \( \text{NO} \)
- Hydrogen (H): 2 H in \( \text{H}_2\text{O} \)
- Oxygen (O): 1 O in \( \text{NO} \) + 1 O in \( \text{H}_2\text{O} \) = 2 O
- To balance the equation:
- We see we need 2 molecules of \( \text{NH}_3 \) to have 2 Nitrogen and 6 Hydrogen.
- This gives us 2 \( \text{NO} \) on the right side.
- To balance the Hydrogen, we needed 3 molecules of \( \text{H}_2\text{O} \), which gives us 6 Hydrogen atoms.
- Finally, to balance Oxygen, we need 2.5 molecules of \( \text{O}_2 \), which gives us 5 Oxygen atoms, 2 of which combine to make 2 \( \text{NO} \) and 3 which combine with Hydrogen to make 3 \( \text{H}_2\text{O} \).
Thus, the balanced equation is:
[tex]\[ 2 \text{NH}_3 + 2.5 \text{O}_2 \rightarrow 2 \text{NO} + 3 \text{H}_2\text{O} \][/tex]
So the final coefficients are:
1. \(1 \text{SiO}_2\) \( + \) \(1 \text{CaC}_2\) \( \rightarrow \) \(1 \text{Si} \) \( + \) \(1 \text{CaO} \) \( + \) \(1 \text{CO}_2 \)
2. [tex]\(2 \text{NH}_3 \)[/tex] [tex]\( + \)[/tex] [tex]\(2.5 \text{O}_2 \)[/tex] [tex]\( \rightarrow \)[/tex] [tex]\(2 \text{NO} \)[/tex] [tex]\( + \)[/tex] [tex]\(3 \text{H}_2\text{O} \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.