Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To use synthetic division to divide the polynomial \( x^5 - 9x^3 + 2x \) by \( x + 4 \), we first identify the divisor, which in this case is \( -4 \) (since \( x + 4 \) is equivalent to setting \( x = -4 \)).
We then write down the coefficients of the polynomial. Given \( x^5 - 9x^3 + 2x \), there are missing coefficients for some terms:
- \( x^5 \) has a coefficient of 1.
- \( x^4 \) is missing, so its coefficient is 0.
- \( x^3 \) has a coefficient of -9.
- \( x^2 \) is missing, so its coefficient is 0.
- \( x \) has a coefficient of 2.
- The constant term is missing, so its coefficient is 0.
Thus, the coefficients to work with are \( [1, 0, -9, 0, 2, 0] \).
### Step-by-Step Synthetic Division:
1. Write down the coefficients: \( 1, 0, -9, 0, 2, 0 \).
2. Write the divisor: \( -4 \).
Start synthetic division process by bringing down the leading coefficient (1):
[tex]\[ \begin{array}{r|rrrrrr} -4 & 1 & 0 & -9 & 0 & 2 & 0 \\ & & (1 \times -4) & (-4 \times -4) & (7 \times -4) & (-28 \times -4) & (114 \times -4)\\ \hline & 1 & -4 & 7 & -28 & 114 & 112 \\ \end{array} \][/tex]
Perform the steps one by one:
- Bring down the first coefficient, 1.
- Multiply 1 by -4 and add to the next coefficient: \( 0 + (-4) = -4 \).
- Multiply -4 by -4 and add to the next coefficient: \( -9 + 16 = 7 \).
- Multiply 7 by -4 and add to the next coefficient: \( 0 + (-28) = -28 \).
- Multiply -28 by -4 and add to the next coefficient: \( 2 + 112 = 114 \).
- Multiply 114 by -4 and add to the next coefficient: \( 0 - 456 = -456 \).
- The final number, 112, is the remainder.
So, the quotient coefficients are \( [1, -4, 7, -28, 114] \) and the remainder is 112.
Thus,
Quotient: \( x^4 - 4x^3 + 7x^2 - 28x + 114 \)
Remainder: [tex]\( 112 \)[/tex]
We then write down the coefficients of the polynomial. Given \( x^5 - 9x^3 + 2x \), there are missing coefficients for some terms:
- \( x^5 \) has a coefficient of 1.
- \( x^4 \) is missing, so its coefficient is 0.
- \( x^3 \) has a coefficient of -9.
- \( x^2 \) is missing, so its coefficient is 0.
- \( x \) has a coefficient of 2.
- The constant term is missing, so its coefficient is 0.
Thus, the coefficients to work with are \( [1, 0, -9, 0, 2, 0] \).
### Step-by-Step Synthetic Division:
1. Write down the coefficients: \( 1, 0, -9, 0, 2, 0 \).
2. Write the divisor: \( -4 \).
Start synthetic division process by bringing down the leading coefficient (1):
[tex]\[ \begin{array}{r|rrrrrr} -4 & 1 & 0 & -9 & 0 & 2 & 0 \\ & & (1 \times -4) & (-4 \times -4) & (7 \times -4) & (-28 \times -4) & (114 \times -4)\\ \hline & 1 & -4 & 7 & -28 & 114 & 112 \\ \end{array} \][/tex]
Perform the steps one by one:
- Bring down the first coefficient, 1.
- Multiply 1 by -4 and add to the next coefficient: \( 0 + (-4) = -4 \).
- Multiply -4 by -4 and add to the next coefficient: \( -9 + 16 = 7 \).
- Multiply 7 by -4 and add to the next coefficient: \( 0 + (-28) = -28 \).
- Multiply -28 by -4 and add to the next coefficient: \( 2 + 112 = 114 \).
- Multiply 114 by -4 and add to the next coefficient: \( 0 - 456 = -456 \).
- The final number, 112, is the remainder.
So, the quotient coefficients are \( [1, -4, 7, -28, 114] \) and the remainder is 112.
Thus,
Quotient: \( x^4 - 4x^3 + 7x^2 - 28x + 114 \)
Remainder: [tex]\( 112 \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.