Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's go through this step-by-step to determine the relationships between the lines \(PQ\) and \(RS\) in both cases.
### Case (a): \(P(1,2,3)\), \(Q(4,5,6)\), \(R(-2,3,5)\), \(S(4,9,11)\)
1. Calculate Direction Vectors:
- For line \(PQ\):
[tex]\[ \vec{PQ} = Q - P = (4-1, 5-2, 6-3) = (3, 3, 3) \][/tex]
- For line \(RS\):
[tex]\[ \vec{RS} = S - R = (4-(-2), 9-3, 11-5) = (6, 6, 6) \][/tex]
2. Cross Product:
To check if the vectors are parallel, we compute the cross product:
[tex]\[ \vec{PQ} \times \vec{RS} = \left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 3 & 3 \\ 6 & 6 & 6 \end{matrix} \right| = (0, 0, 0) \][/tex]
Since the cross product is zero, the direction vectors are parallel.
3. Dot Product:
To check if they are perpendicular, we compute the dot product:
[tex]\[ \vec{PQ} \cdot \vec{RS} = 3 \cdot 6 + 3 \cdot 6 + 3 \cdot 6 = 18 + 18 + 18 = 54 \][/tex]
The dot product is not zero, so the vectors are not perpendicular.
Conclusion for Case (a): The lines \(PQ\) and \(RS\) are parallel.
### Case (b): \(P(3,-1,-3)\), \(Q(2,-3,1)\), \(R(3,-2,5)\), \(S(-1,-2,1)\)
1. Calculate Direction Vectors:
- For line \(PQ\):
[tex]\[ \vec{PQ} = Q - P = (2-3, -3-(-1), 1-(-3)) = (-1, -2, 4) \][/tex]
- For line \(RS\):
[tex]\[ \vec{RS} = S - R = (-1-3, -2-(-2), 1-5) = (-4, 0, -4) \][/tex]
2. Cross Product:
To check if the vectors are parallel, we compute the cross product:
[tex]\[ \vec{PQ} \times \vec{RS} = \left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -2 & 4 \\ -4 & 0 & -4 \end{matrix} \right| = (8, -20, -8) \][/tex]
Since the cross product is not zero, the direction vectors are not parallel.
3. Dot Product:
To check if they are perpendicular, we compute the dot product:
[tex]\[ \vec{PQ} \cdot \vec{RS} = (-1) \cdot (-4) + (-2) \cdot 0 + 4 \cdot (-4) = 4 + 0 - 16 = -12 \][/tex]
The dot product is not zero, so the vectors are not perpendicular.
Conclusion for Case (b): The lines \(PQ\) and \(RS\) intersect.
### Summary:
- Case (a): The lines \(PQ\) and \(RS\) are parallel.
- Case (b): The lines [tex]\(PQ\)[/tex] and [tex]\(RS\)[/tex] intersect but are not perpendicular.
### Case (a): \(P(1,2,3)\), \(Q(4,5,6)\), \(R(-2,3,5)\), \(S(4,9,11)\)
1. Calculate Direction Vectors:
- For line \(PQ\):
[tex]\[ \vec{PQ} = Q - P = (4-1, 5-2, 6-3) = (3, 3, 3) \][/tex]
- For line \(RS\):
[tex]\[ \vec{RS} = S - R = (4-(-2), 9-3, 11-5) = (6, 6, 6) \][/tex]
2. Cross Product:
To check if the vectors are parallel, we compute the cross product:
[tex]\[ \vec{PQ} \times \vec{RS} = \left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 3 & 3 \\ 6 & 6 & 6 \end{matrix} \right| = (0, 0, 0) \][/tex]
Since the cross product is zero, the direction vectors are parallel.
3. Dot Product:
To check if they are perpendicular, we compute the dot product:
[tex]\[ \vec{PQ} \cdot \vec{RS} = 3 \cdot 6 + 3 \cdot 6 + 3 \cdot 6 = 18 + 18 + 18 = 54 \][/tex]
The dot product is not zero, so the vectors are not perpendicular.
Conclusion for Case (a): The lines \(PQ\) and \(RS\) are parallel.
### Case (b): \(P(3,-1,-3)\), \(Q(2,-3,1)\), \(R(3,-2,5)\), \(S(-1,-2,1)\)
1. Calculate Direction Vectors:
- For line \(PQ\):
[tex]\[ \vec{PQ} = Q - P = (2-3, -3-(-1), 1-(-3)) = (-1, -2, 4) \][/tex]
- For line \(RS\):
[tex]\[ \vec{RS} = S - R = (-1-3, -2-(-2), 1-5) = (-4, 0, -4) \][/tex]
2. Cross Product:
To check if the vectors are parallel, we compute the cross product:
[tex]\[ \vec{PQ} \times \vec{RS} = \left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -2 & 4 \\ -4 & 0 & -4 \end{matrix} \right| = (8, -20, -8) \][/tex]
Since the cross product is not zero, the direction vectors are not parallel.
3. Dot Product:
To check if they are perpendicular, we compute the dot product:
[tex]\[ \vec{PQ} \cdot \vec{RS} = (-1) \cdot (-4) + (-2) \cdot 0 + 4 \cdot (-4) = 4 + 0 - 16 = -12 \][/tex]
The dot product is not zero, so the vectors are not perpendicular.
Conclusion for Case (b): The lines \(PQ\) and \(RS\) intersect.
### Summary:
- Case (a): The lines \(PQ\) and \(RS\) are parallel.
- Case (b): The lines [tex]\(PQ\)[/tex] and [tex]\(RS\)[/tex] intersect but are not perpendicular.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.