Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's break down the multiplication of the two expressions step-by-step:
We need to find the product of \((9t - 4)\) and \((-9t - 4)\).
Step 1: Use the distributive property \(a(b + c) = ab + ac\) to multiply each term in the first polynomial by each term in the second polynomial.
[tex]\[ (9t - 4)(-9t - 4) = 9t \cdot (-9t) + 9t \cdot (-4) + (-4) \cdot (-9t) + (-4) \cdot (-4) \][/tex]
Step 2: Perform the multiplications:
[tex]\[ 9t \cdot (-9t) = -81t^2 \][/tex]
[tex]\[ 9t \cdot (-4) = -36t \][/tex]
[tex]\[ (-4) \cdot (-9t) = 36t \][/tex]
[tex]\[ (-4) \cdot (-4) = 16 \][/tex]
Step 3: Combine all the terms:
[tex]\[ -81t^2 + (-36t) + 36t + 16 \][/tex]
Step 4: Simplify by combining like terms, namely the \(-36t\) and \(+36t\) terms:
[tex]\[ -81t^2 - 36t + 36t + 16 \][/tex]
Since \(-36t + 36t = 0\), they cancel out, leaving us with:
[tex]\[ -81t^2 + 16 \][/tex]
Thus, the product of \((9t - 4)\) and \((-9t - 4)\) is:
[tex]\[ \boxed{-81t^2 + 16} \][/tex]
We need to find the product of \((9t - 4)\) and \((-9t - 4)\).
Step 1: Use the distributive property \(a(b + c) = ab + ac\) to multiply each term in the first polynomial by each term in the second polynomial.
[tex]\[ (9t - 4)(-9t - 4) = 9t \cdot (-9t) + 9t \cdot (-4) + (-4) \cdot (-9t) + (-4) \cdot (-4) \][/tex]
Step 2: Perform the multiplications:
[tex]\[ 9t \cdot (-9t) = -81t^2 \][/tex]
[tex]\[ 9t \cdot (-4) = -36t \][/tex]
[tex]\[ (-4) \cdot (-9t) = 36t \][/tex]
[tex]\[ (-4) \cdot (-4) = 16 \][/tex]
Step 3: Combine all the terms:
[tex]\[ -81t^2 + (-36t) + 36t + 16 \][/tex]
Step 4: Simplify by combining like terms, namely the \(-36t\) and \(+36t\) terms:
[tex]\[ -81t^2 - 36t + 36t + 16 \][/tex]
Since \(-36t + 36t = 0\), they cancel out, leaving us with:
[tex]\[ -81t^2 + 16 \][/tex]
Thus, the product of \((9t - 4)\) and \((-9t - 4)\) is:
[tex]\[ \boxed{-81t^2 + 16} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.