Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find the [tex]\(12^{\text{th}}\)[/tex] term of the arithmetic progression [tex]\(2, 6, 10, \ldots\)[/tex].

Sagot :

To find the \(12^{\text{th}}\) term of an Arithmetic Progression (A.P.) where the first few terms are given as 2, 6, 10, we will follow these steps:

1. Identify the first term (a) of the A.P.:
The first term \(a\) is 2.

2. Determine the common difference (d):
The common difference \(d\) can be found by subtracting any term from the subsequent term. For example:
[tex]\[ d = 6 - 2 = 4 \][/tex]

3. Use the formula for the \(n\)th term of an A.P.:
The formula to find the \(n\)th term of an A.P. is
[tex]\[ a_n = a + (n - 1) \cdot d \][/tex]
Here, we need to find the \(12^{\text{th}}\) term, so \(n = 12\).

4. Substitute the values into the formula:
[tex]\[ a_{12} = 2 + (12 - 1) \cdot 4 \][/tex]

5. Simplify the equation:
[tex]\[ a_{12} = 2 + 11 \cdot 4 \][/tex]
[tex]\[ a_{12} = 2 + 44 \][/tex]

6. Calculate the result:
[tex]\[ a_{12} = 46 \][/tex]

Hence, the [tex]\(12^{\text{th}}\)[/tex] term of the A.P. is 46.