At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Great! Let's walk through the problem step-by-step together.
1. Determine the weight of the first jar:
- Andrea's first jar weighs \( 3 \frac{1}{3} \) ounces.
- To write it as an improper fraction: \( 3 \frac{1}{3} = 3 + \frac{1}{3} \).
- Converting \( 3 \frac{1}{3} \) to a decimal: \( 3 + \frac{1}{3} = 3.333\overline{3} \) (or approximately 3.3333).
2. Determine the weight of the second jar:
- The second jar weighs \( \frac{1}{2} \) ounce more than the first jar.
- Add \( \frac{1}{2} \) (which is 0.5) to the weight of the first jar.
- The weight of the second jar: \( 3.333\overline{3} + 0.5 = 3.833\overline{3} \) (or approximately 3.8333).
3. Calculate the total weight of both jars combined:
- Add the weight of the first jar \( 3.333\overline{3} \) and the weight of the second jar \( 3.833\overline{3} \).
- The total weight of the two jars: \( 3.333\overline{3} + 3.833\overline{3} = 7.166\overline{6} \) (or approximately 7.1667).
So, filling in the correct spaces:
- The weight of the first jar is approximately 3.3333 ounces.
- The weight of the second jar is approximately 3.8333 ounces.
- The total weight of the two jars together is approximately 7.1667 ounces.
1. Determine the weight of the first jar:
- Andrea's first jar weighs \( 3 \frac{1}{3} \) ounces.
- To write it as an improper fraction: \( 3 \frac{1}{3} = 3 + \frac{1}{3} \).
- Converting \( 3 \frac{1}{3} \) to a decimal: \( 3 + \frac{1}{3} = 3.333\overline{3} \) (or approximately 3.3333).
2. Determine the weight of the second jar:
- The second jar weighs \( \frac{1}{2} \) ounce more than the first jar.
- Add \( \frac{1}{2} \) (which is 0.5) to the weight of the first jar.
- The weight of the second jar: \( 3.333\overline{3} + 0.5 = 3.833\overline{3} \) (or approximately 3.8333).
3. Calculate the total weight of both jars combined:
- Add the weight of the first jar \( 3.333\overline{3} \) and the weight of the second jar \( 3.833\overline{3} \).
- The total weight of the two jars: \( 3.333\overline{3} + 3.833\overline{3} = 7.166\overline{6} \) (or approximately 7.1667).
So, filling in the correct spaces:
- The weight of the first jar is approximately 3.3333 ounces.
- The weight of the second jar is approximately 3.8333 ounces.
- The total weight of the two jars together is approximately 7.1667 ounces.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.