Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the formula and graph of the sequence defined by the function \( f(x+1) = \frac{2}{3} f(x) \) with an initial value of 108, let's break down the steps and derive the terms of the sequence.
1. Initial Value:
The sequence starts with an initial value of \( f(0) = 108 \).
2. Recursive Formula:
The given recursive formula is \( f(x+1) = \frac{2}{3} f(x) \).
This means that each term in the sequence is obtained by multiplying the previous term by \( \frac{2}{3} \).
3. Finding the First Few Terms:
Let's find the values of the first few terms to understand the sequence better:
- \( f(0) = 108 \)
- \( f(1) = \frac{2}{3} \cdot 108 = 72 \)
- \( f(2) = \frac{2}{3} \cdot 72 = 48 \)
- \( f(3) = \frac{2}{3} \cdot 48 = 32 \) (approximately)
- \( f(4) = \frac{2}{3} \cdot 32 = 21.33 \) (approximately)
- \( f(5) = \frac{2}{3} \cdot 21.33 = 14.22 \) (approximately)
- We can continue finding more terms if needed, but let's stop here for clarity.
4. General Formula:
To derive a general formula for the sequence, observe the pattern:
- \( f(1) = \left(\frac{2}{3}\right) \cdot 108 \)
- \( f(2) = \left(\frac{2}{3}\right)^2 \cdot 108 \)
- \( f(3) = \left(\frac{2}{3}\right)^3 \cdot 108 \)
Generalizing this, we get:
[tex]\[ f(x) = \left(\frac{2}{3}\right)^x \cdot 108 \][/tex]
5. Graphing the Sequence:
To graph the sequence, plot the terms \( f(x) \) for integer values of \( x \).
Here are the first few points:
- \( (0, 108) \)
- \( (1, 72) \)
- \( (2, 48) \)
- \( (3, 32) \)
- \( (4, 21.33) \)
- \( (5, 14.22) \)
Plot these points on a graph where the x-axis represents the term number \( x \) and the y-axis represents the term value \( f(x) \).
6. Behavior of the Sequence:
- The sequence is decreasing and converges towards zero as \( x \) increases.
- It is a geometric sequence with a common ratio of \( \frac{2}{3} \).
Thus, the graph would show a series of points that start at [tex]\( (0, 108) \)[/tex] and rapidly decrease towards zero, illustrating the exponential decay described by [tex]\( f(x) = \left(\frac{2}{3}\right)^x \cdot 108 \)[/tex].
1. Initial Value:
The sequence starts with an initial value of \( f(0) = 108 \).
2. Recursive Formula:
The given recursive formula is \( f(x+1) = \frac{2}{3} f(x) \).
This means that each term in the sequence is obtained by multiplying the previous term by \( \frac{2}{3} \).
3. Finding the First Few Terms:
Let's find the values of the first few terms to understand the sequence better:
- \( f(0) = 108 \)
- \( f(1) = \frac{2}{3} \cdot 108 = 72 \)
- \( f(2) = \frac{2}{3} \cdot 72 = 48 \)
- \( f(3) = \frac{2}{3} \cdot 48 = 32 \) (approximately)
- \( f(4) = \frac{2}{3} \cdot 32 = 21.33 \) (approximately)
- \( f(5) = \frac{2}{3} \cdot 21.33 = 14.22 \) (approximately)
- We can continue finding more terms if needed, but let's stop here for clarity.
4. General Formula:
To derive a general formula for the sequence, observe the pattern:
- \( f(1) = \left(\frac{2}{3}\right) \cdot 108 \)
- \( f(2) = \left(\frac{2}{3}\right)^2 \cdot 108 \)
- \( f(3) = \left(\frac{2}{3}\right)^3 \cdot 108 \)
Generalizing this, we get:
[tex]\[ f(x) = \left(\frac{2}{3}\right)^x \cdot 108 \][/tex]
5. Graphing the Sequence:
To graph the sequence, plot the terms \( f(x) \) for integer values of \( x \).
Here are the first few points:
- \( (0, 108) \)
- \( (1, 72) \)
- \( (2, 48) \)
- \( (3, 32) \)
- \( (4, 21.33) \)
- \( (5, 14.22) \)
Plot these points on a graph where the x-axis represents the term number \( x \) and the y-axis represents the term value \( f(x) \).
6. Behavior of the Sequence:
- The sequence is decreasing and converges towards zero as \( x \) increases.
- It is a geometric sequence with a common ratio of \( \frac{2}{3} \).
Thus, the graph would show a series of points that start at [tex]\( (0, 108) \)[/tex] and rapidly decrease towards zero, illustrating the exponential decay described by [tex]\( f(x) = \left(\frac{2}{3}\right)^x \cdot 108 \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.