Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's work through this problem step-by-step to find the speed of the stream.
### Given Information:
- Speed of the boat in still water: \( 15 \) km/h
- Distance traveled upstream and downstream: \( 30 \) km each way
- Total time for the round trip: \( 30 \) minutes, which is \( 0.5 \) hours
### Let's denote:
- Speed of the stream as \( x \) km/h
- Speed of the boat upstream (against the current) as \( 15 - x \) km/h
- Speed of the boat downstream (with the current) as \( 15 + x \) km/h
### Time Calculation for Upstream and Downstream:
1. Time taken to travel upstream \( = \frac{\text{Distance}}{\text{Speed}} = \frac{30 \text{ km}}{15 - x \text{ km/h}} \)
2. Time taken to travel downstream \( = \frac{\text{Distance}}{\text{Speed}} = \frac{30 \text{ km}}{15 + x \text{ km/h}} \)
### Total Time for the Round Trip:
Given that the total time is 0.5 hours:
[tex]\[ \frac{30}{15 - x} + \frac{30}{15 + x} = 0.5 \][/tex]
### Solving for \( x \):
To solve this equation, we follow these steps:
1. Multiply through by the common denominator \((15 - x)(15 + x)\) to clear the denominators.
[tex]\[ 30 \cdot (15 + x) + 30 \cdot (15 - x) = 0.5 \cdot (15 - x)(15 + x) \][/tex]
2. Simplify the equation:
[tex]\[ 30(15 + x) + 30(15 - x) = 0.5 (225 - x^2) \][/tex]
[tex]\[ 450 + 30x + 450 - 30x = 0.5 (225 - x^2) \][/tex]
[tex]\[ 900 = 0.5 (225 - x^2) \][/tex]
3. Solve for \( x^2 \):
[tex]\[ 900 = 112.5 - 0.5x^2 \][/tex]
[tex]\[ 900 - 112.5 = -0.5x^2 \][/tex]
[tex]\[ 787.5 = -0.5x^2 \][/tex]
[tex]\[ x^2 = \frac{787.5}{-0.5} \][/tex]
[tex]\[ x^2 = -1575 \][/tex]
4. Taking the square root of both sides, we get:
[tex]\[ x = \sqrt{-1575} \][/tex]
This results in a complex number solution, indicating the possible values of \( x \):
[tex]\[ x = \pm 25.98i \][/tex]
### Conclusion:
The speed of the stream is a complex number, specifically [tex]\( \pm 25.98i \)[/tex] km/h. This indicates that under the given conditions, the stream speed in real numbers is not feasible, leading to an imaginary solution.
### Given Information:
- Speed of the boat in still water: \( 15 \) km/h
- Distance traveled upstream and downstream: \( 30 \) km each way
- Total time for the round trip: \( 30 \) minutes, which is \( 0.5 \) hours
### Let's denote:
- Speed of the stream as \( x \) km/h
- Speed of the boat upstream (against the current) as \( 15 - x \) km/h
- Speed of the boat downstream (with the current) as \( 15 + x \) km/h
### Time Calculation for Upstream and Downstream:
1. Time taken to travel upstream \( = \frac{\text{Distance}}{\text{Speed}} = \frac{30 \text{ km}}{15 - x \text{ km/h}} \)
2. Time taken to travel downstream \( = \frac{\text{Distance}}{\text{Speed}} = \frac{30 \text{ km}}{15 + x \text{ km/h}} \)
### Total Time for the Round Trip:
Given that the total time is 0.5 hours:
[tex]\[ \frac{30}{15 - x} + \frac{30}{15 + x} = 0.5 \][/tex]
### Solving for \( x \):
To solve this equation, we follow these steps:
1. Multiply through by the common denominator \((15 - x)(15 + x)\) to clear the denominators.
[tex]\[ 30 \cdot (15 + x) + 30 \cdot (15 - x) = 0.5 \cdot (15 - x)(15 + x) \][/tex]
2. Simplify the equation:
[tex]\[ 30(15 + x) + 30(15 - x) = 0.5 (225 - x^2) \][/tex]
[tex]\[ 450 + 30x + 450 - 30x = 0.5 (225 - x^2) \][/tex]
[tex]\[ 900 = 0.5 (225 - x^2) \][/tex]
3. Solve for \( x^2 \):
[tex]\[ 900 = 112.5 - 0.5x^2 \][/tex]
[tex]\[ 900 - 112.5 = -0.5x^2 \][/tex]
[tex]\[ 787.5 = -0.5x^2 \][/tex]
[tex]\[ x^2 = \frac{787.5}{-0.5} \][/tex]
[tex]\[ x^2 = -1575 \][/tex]
4. Taking the square root of both sides, we get:
[tex]\[ x = \sqrt{-1575} \][/tex]
This results in a complex number solution, indicating the possible values of \( x \):
[tex]\[ x = \pm 25.98i \][/tex]
### Conclusion:
The speed of the stream is a complex number, specifically [tex]\( \pm 25.98i \)[/tex] km/h. This indicates that under the given conditions, the stream speed in real numbers is not feasible, leading to an imaginary solution.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.