Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's work through this problem step-by-step to find the speed of the stream.
### Given Information:
- Speed of the boat in still water: \( 15 \) km/h
- Distance traveled upstream and downstream: \( 30 \) km each way
- Total time for the round trip: \( 30 \) minutes, which is \( 0.5 \) hours
### Let's denote:
- Speed of the stream as \( x \) km/h
- Speed of the boat upstream (against the current) as \( 15 - x \) km/h
- Speed of the boat downstream (with the current) as \( 15 + x \) km/h
### Time Calculation for Upstream and Downstream:
1. Time taken to travel upstream \( = \frac{\text{Distance}}{\text{Speed}} = \frac{30 \text{ km}}{15 - x \text{ km/h}} \)
2. Time taken to travel downstream \( = \frac{\text{Distance}}{\text{Speed}} = \frac{30 \text{ km}}{15 + x \text{ km/h}} \)
### Total Time for the Round Trip:
Given that the total time is 0.5 hours:
[tex]\[ \frac{30}{15 - x} + \frac{30}{15 + x} = 0.5 \][/tex]
### Solving for \( x \):
To solve this equation, we follow these steps:
1. Multiply through by the common denominator \((15 - x)(15 + x)\) to clear the denominators.
[tex]\[ 30 \cdot (15 + x) + 30 \cdot (15 - x) = 0.5 \cdot (15 - x)(15 + x) \][/tex]
2. Simplify the equation:
[tex]\[ 30(15 + x) + 30(15 - x) = 0.5 (225 - x^2) \][/tex]
[tex]\[ 450 + 30x + 450 - 30x = 0.5 (225 - x^2) \][/tex]
[tex]\[ 900 = 0.5 (225 - x^2) \][/tex]
3. Solve for \( x^2 \):
[tex]\[ 900 = 112.5 - 0.5x^2 \][/tex]
[tex]\[ 900 - 112.5 = -0.5x^2 \][/tex]
[tex]\[ 787.5 = -0.5x^2 \][/tex]
[tex]\[ x^2 = \frac{787.5}{-0.5} \][/tex]
[tex]\[ x^2 = -1575 \][/tex]
4. Taking the square root of both sides, we get:
[tex]\[ x = \sqrt{-1575} \][/tex]
This results in a complex number solution, indicating the possible values of \( x \):
[tex]\[ x = \pm 25.98i \][/tex]
### Conclusion:
The speed of the stream is a complex number, specifically [tex]\( \pm 25.98i \)[/tex] km/h. This indicates that under the given conditions, the stream speed in real numbers is not feasible, leading to an imaginary solution.
### Given Information:
- Speed of the boat in still water: \( 15 \) km/h
- Distance traveled upstream and downstream: \( 30 \) km each way
- Total time for the round trip: \( 30 \) minutes, which is \( 0.5 \) hours
### Let's denote:
- Speed of the stream as \( x \) km/h
- Speed of the boat upstream (against the current) as \( 15 - x \) km/h
- Speed of the boat downstream (with the current) as \( 15 + x \) km/h
### Time Calculation for Upstream and Downstream:
1. Time taken to travel upstream \( = \frac{\text{Distance}}{\text{Speed}} = \frac{30 \text{ km}}{15 - x \text{ km/h}} \)
2. Time taken to travel downstream \( = \frac{\text{Distance}}{\text{Speed}} = \frac{30 \text{ km}}{15 + x \text{ km/h}} \)
### Total Time for the Round Trip:
Given that the total time is 0.5 hours:
[tex]\[ \frac{30}{15 - x} + \frac{30}{15 + x} = 0.5 \][/tex]
### Solving for \( x \):
To solve this equation, we follow these steps:
1. Multiply through by the common denominator \((15 - x)(15 + x)\) to clear the denominators.
[tex]\[ 30 \cdot (15 + x) + 30 \cdot (15 - x) = 0.5 \cdot (15 - x)(15 + x) \][/tex]
2. Simplify the equation:
[tex]\[ 30(15 + x) + 30(15 - x) = 0.5 (225 - x^2) \][/tex]
[tex]\[ 450 + 30x + 450 - 30x = 0.5 (225 - x^2) \][/tex]
[tex]\[ 900 = 0.5 (225 - x^2) \][/tex]
3. Solve for \( x^2 \):
[tex]\[ 900 = 112.5 - 0.5x^2 \][/tex]
[tex]\[ 900 - 112.5 = -0.5x^2 \][/tex]
[tex]\[ 787.5 = -0.5x^2 \][/tex]
[tex]\[ x^2 = \frac{787.5}{-0.5} \][/tex]
[tex]\[ x^2 = -1575 \][/tex]
4. Taking the square root of both sides, we get:
[tex]\[ x = \sqrt{-1575} \][/tex]
This results in a complex number solution, indicating the possible values of \( x \):
[tex]\[ x = \pm 25.98i \][/tex]
### Conclusion:
The speed of the stream is a complex number, specifically [tex]\( \pm 25.98i \)[/tex] km/h. This indicates that under the given conditions, the stream speed in real numbers is not feasible, leading to an imaginary solution.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.