Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which of the given functions are exponential functions, we need to understand the definition of an exponential function. An exponential function is a function of the form \( f(x) = a^x \), where \( a \) is a constant and \( x \) is the variable exponent. Let's analyze each function one by one:
(a) \( v(x) = \pi x \)
This function is a linear function because it can be written as \( v(x) = \pi \cdot x \), which is not in the form of \( a^x \). Thus, it is not an exponential function.
(b) \( t(x) = (\sqrt{\pi})^x \)
Here, \( t(x) \) is in the form \( a^x \) where \( a = \sqrt{\pi} \). Since \( \sqrt{\pi} \) is a constant, \( t(x) \) is an exponential function.
(c) \( h(x) = (-\pi)^x \)
This function is of the form \( a^x \) where \( a = -\pi \). Despite \( a \) being negative, it is still a constant raised to the power of \( x \). Therefore, \( h(x) \) is an exponential function.
(d) \( n(x) = \pi^x \)
This function clearly matches the form \( a^x \) where \( a = \pi \), a constant. Thus, \( n(x) \) is an exponential function.
(e) \( p(x) = x^\pi \)
In this case, the base is \( x \) and the exponent is \( \pi \), a constant. This is a power function rather than an exponential function, as it cannot be written as \( a^x \) with a constant base and variable exponent. Therefore, \( p(x) \) is not an exponential function.
Based on this analysis, the functions that are exponential are:
- (b) \( t(x) = (\sqrt{\pi})^x \)
- (c) \( h(x) = (-\pi)^x \)
- (d) \( n(x) = \pi^x \)
Thus, the correct selections for the exponential functions are:
[tex]\[ \boxed{2, 3, 4} \][/tex]
(a) \( v(x) = \pi x \)
This function is a linear function because it can be written as \( v(x) = \pi \cdot x \), which is not in the form of \( a^x \). Thus, it is not an exponential function.
(b) \( t(x) = (\sqrt{\pi})^x \)
Here, \( t(x) \) is in the form \( a^x \) where \( a = \sqrt{\pi} \). Since \( \sqrt{\pi} \) is a constant, \( t(x) \) is an exponential function.
(c) \( h(x) = (-\pi)^x \)
This function is of the form \( a^x \) where \( a = -\pi \). Despite \( a \) being negative, it is still a constant raised to the power of \( x \). Therefore, \( h(x) \) is an exponential function.
(d) \( n(x) = \pi^x \)
This function clearly matches the form \( a^x \) where \( a = \pi \), a constant. Thus, \( n(x) \) is an exponential function.
(e) \( p(x) = x^\pi \)
In this case, the base is \( x \) and the exponent is \( \pi \), a constant. This is a power function rather than an exponential function, as it cannot be written as \( a^x \) with a constant base and variable exponent. Therefore, \( p(x) \) is not an exponential function.
Based on this analysis, the functions that are exponential are:
- (b) \( t(x) = (\sqrt{\pi})^x \)
- (c) \( h(x) = (-\pi)^x \)
- (d) \( n(x) = \pi^x \)
Thus, the correct selections for the exponential functions are:
[tex]\[ \boxed{2, 3, 4} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.