Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which of the given functions are exponential functions, we need to understand the definition of an exponential function. An exponential function is a function of the form \( f(x) = a^x \), where \( a \) is a constant and \( x \) is the variable exponent. Let's analyze each function one by one:
(a) \( v(x) = \pi x \)
This function is a linear function because it can be written as \( v(x) = \pi \cdot x \), which is not in the form of \( a^x \). Thus, it is not an exponential function.
(b) \( t(x) = (\sqrt{\pi})^x \)
Here, \( t(x) \) is in the form \( a^x \) where \( a = \sqrt{\pi} \). Since \( \sqrt{\pi} \) is a constant, \( t(x) \) is an exponential function.
(c) \( h(x) = (-\pi)^x \)
This function is of the form \( a^x \) where \( a = -\pi \). Despite \( a \) being negative, it is still a constant raised to the power of \( x \). Therefore, \( h(x) \) is an exponential function.
(d) \( n(x) = \pi^x \)
This function clearly matches the form \( a^x \) where \( a = \pi \), a constant. Thus, \( n(x) \) is an exponential function.
(e) \( p(x) = x^\pi \)
In this case, the base is \( x \) and the exponent is \( \pi \), a constant. This is a power function rather than an exponential function, as it cannot be written as \( a^x \) with a constant base and variable exponent. Therefore, \( p(x) \) is not an exponential function.
Based on this analysis, the functions that are exponential are:
- (b) \( t(x) = (\sqrt{\pi})^x \)
- (c) \( h(x) = (-\pi)^x \)
- (d) \( n(x) = \pi^x \)
Thus, the correct selections for the exponential functions are:
[tex]\[ \boxed{2, 3, 4} \][/tex]
(a) \( v(x) = \pi x \)
This function is a linear function because it can be written as \( v(x) = \pi \cdot x \), which is not in the form of \( a^x \). Thus, it is not an exponential function.
(b) \( t(x) = (\sqrt{\pi})^x \)
Here, \( t(x) \) is in the form \( a^x \) where \( a = \sqrt{\pi} \). Since \( \sqrt{\pi} \) is a constant, \( t(x) \) is an exponential function.
(c) \( h(x) = (-\pi)^x \)
This function is of the form \( a^x \) where \( a = -\pi \). Despite \( a \) being negative, it is still a constant raised to the power of \( x \). Therefore, \( h(x) \) is an exponential function.
(d) \( n(x) = \pi^x \)
This function clearly matches the form \( a^x \) where \( a = \pi \), a constant. Thus, \( n(x) \) is an exponential function.
(e) \( p(x) = x^\pi \)
In this case, the base is \( x \) and the exponent is \( \pi \), a constant. This is a power function rather than an exponential function, as it cannot be written as \( a^x \) with a constant base and variable exponent. Therefore, \( p(x) \) is not an exponential function.
Based on this analysis, the functions that are exponential are:
- (b) \( t(x) = (\sqrt{\pi})^x \)
- (c) \( h(x) = (-\pi)^x \)
- (d) \( n(x) = \pi^x \)
Thus, the correct selections for the exponential functions are:
[tex]\[ \boxed{2, 3, 4} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.