Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Simplify the expression:
[tex]\[ \frac{1-\cos 2\theta}{\sin 2\theta} = \tan \theta \][/tex]


Sagot :

Certainly! Let's solve the equation \(\frac{1 - \cos 2\theta}{\sin 2\theta} = \tan \theta\) step by step.

### Step 1: Recall Trigonometric Identities

First, recall the double-angle identities for sine and cosine:
1. \(\cos 2\theta = 1 - 2\sin^2 \theta\)
2. \(\sin 2\theta = 2 \sin \theta \cos \theta\)
3. \(\tan \theta = \frac{\sin \theta}{\cos \theta}\)

### Step 2: Simplify the Left-Hand Side

Evaluate the left-hand side \(\frac{1 - \cos 2\theta}{\sin 2\theta}\) using the identities:
[tex]\[ \frac{1 - \cos 2\theta}{\sin 2\theta} \][/tex]
Substitute \(\cos 2\theta = 1 - 2\sin^2 \theta\):
[tex]\[ \frac{1 - (1 - 2\sin^2 \theta)}{\sin 2\theta} = \frac{1 - 1 + 2\sin^2 \theta}{\sin 2\theta} = \frac{2\sin^2 \theta}{\sin 2\theta} \][/tex]
Substitute \(\sin 2\theta = 2 \sin \theta \cos \theta\):
[tex]\[ \frac{2\sin^2 \theta}{2 \sin \theta \cos \theta} = \frac{\sin \theta}{\cos \theta} \][/tex]
This reduces to:
[tex]\[ \tan \theta \][/tex]

### Step 3: Compare Both Sides

Now we see that the left-hand side simplifies to \(\tan \theta\):
[tex]\[ \frac{1 - \cos 2\theta}{\sin 2\theta} = \tan \theta \][/tex]
Since the right-hand side of the original equation is already \(\tan \theta\), we have shown:
[tex]\[ \tan \theta = \tan \theta \][/tex]

### Step 4: Conclusion

Since both the simplified left-hand side and the right-hand side are equal, the equation holds true.

### Final Result

So, [tex]\(\frac{1 - \cos 2\theta}{\sin 2\theta} = \tan \theta\)[/tex] is indeed a true statement.