Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's solve the equation \(\frac{1 - \cos 2\theta}{\sin 2\theta} = \tan \theta\) step by step.
### Step 1: Recall Trigonometric Identities
First, recall the double-angle identities for sine and cosine:
1. \(\cos 2\theta = 1 - 2\sin^2 \theta\)
2. \(\sin 2\theta = 2 \sin \theta \cos \theta\)
3. \(\tan \theta = \frac{\sin \theta}{\cos \theta}\)
### Step 2: Simplify the Left-Hand Side
Evaluate the left-hand side \(\frac{1 - \cos 2\theta}{\sin 2\theta}\) using the identities:
[tex]\[ \frac{1 - \cos 2\theta}{\sin 2\theta} \][/tex]
Substitute \(\cos 2\theta = 1 - 2\sin^2 \theta\):
[tex]\[ \frac{1 - (1 - 2\sin^2 \theta)}{\sin 2\theta} = \frac{1 - 1 + 2\sin^2 \theta}{\sin 2\theta} = \frac{2\sin^2 \theta}{\sin 2\theta} \][/tex]
Substitute \(\sin 2\theta = 2 \sin \theta \cos \theta\):
[tex]\[ \frac{2\sin^2 \theta}{2 \sin \theta \cos \theta} = \frac{\sin \theta}{\cos \theta} \][/tex]
This reduces to:
[tex]\[ \tan \theta \][/tex]
### Step 3: Compare Both Sides
Now we see that the left-hand side simplifies to \(\tan \theta\):
[tex]\[ \frac{1 - \cos 2\theta}{\sin 2\theta} = \tan \theta \][/tex]
Since the right-hand side of the original equation is already \(\tan \theta\), we have shown:
[tex]\[ \tan \theta = \tan \theta \][/tex]
### Step 4: Conclusion
Since both the simplified left-hand side and the right-hand side are equal, the equation holds true.
### Final Result
So, [tex]\(\frac{1 - \cos 2\theta}{\sin 2\theta} = \tan \theta\)[/tex] is indeed a true statement.
### Step 1: Recall Trigonometric Identities
First, recall the double-angle identities for sine and cosine:
1. \(\cos 2\theta = 1 - 2\sin^2 \theta\)
2. \(\sin 2\theta = 2 \sin \theta \cos \theta\)
3. \(\tan \theta = \frac{\sin \theta}{\cos \theta}\)
### Step 2: Simplify the Left-Hand Side
Evaluate the left-hand side \(\frac{1 - \cos 2\theta}{\sin 2\theta}\) using the identities:
[tex]\[ \frac{1 - \cos 2\theta}{\sin 2\theta} \][/tex]
Substitute \(\cos 2\theta = 1 - 2\sin^2 \theta\):
[tex]\[ \frac{1 - (1 - 2\sin^2 \theta)}{\sin 2\theta} = \frac{1 - 1 + 2\sin^2 \theta}{\sin 2\theta} = \frac{2\sin^2 \theta}{\sin 2\theta} \][/tex]
Substitute \(\sin 2\theta = 2 \sin \theta \cos \theta\):
[tex]\[ \frac{2\sin^2 \theta}{2 \sin \theta \cos \theta} = \frac{\sin \theta}{\cos \theta} \][/tex]
This reduces to:
[tex]\[ \tan \theta \][/tex]
### Step 3: Compare Both Sides
Now we see that the left-hand side simplifies to \(\tan \theta\):
[tex]\[ \frac{1 - \cos 2\theta}{\sin 2\theta} = \tan \theta \][/tex]
Since the right-hand side of the original equation is already \(\tan \theta\), we have shown:
[tex]\[ \tan \theta = \tan \theta \][/tex]
### Step 4: Conclusion
Since both the simplified left-hand side and the right-hand side are equal, the equation holds true.
### Final Result
So, [tex]\(\frac{1 - \cos 2\theta}{\sin 2\theta} = \tan \theta\)[/tex] is indeed a true statement.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.