Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's break down the steps to create a linear function that models the total cost \( t \) for a single order of \( s \) pairs of shoes, given the costs mentioned.
1. Understand the Problem:
- Each pair of shoes costs [tex]$\$[/tex]59.99$.
- There is a flat rate shipping fee of [tex]$\$[/tex]8.95$ irrespective of the number of pairs of shoes purchased.
2. Identify the Components of the Linear Function:
- The cost of \( s \) pairs of shoes will be \( \$59.99 \times s \).
- The flat rate shipping fee is a constant \( \$8.95 \).
3. Formulate the Linear Function:
A linear function can be written in the form \( t(s) = ms + c \), where \( m \) is the rate of change and \( c \) is the y-intercept (or constant term).
- Here, \( m \), the rate of change, is \( \$59.99 \) because this is the cost per pair of shoes.
- The constant term \( c \) is the flat shipping fee, which is \( \$8.95 \).
4. Write the Function:
The total cost \( t \) for \( s \) pairs of shoes can be modeled by the linear function:
[tex]\[ t(s) = 59.99s + 8.95 \][/tex]
5. Conclusion:
Thus, the linear function that models the total cost \( t \) given \( s \) pairs of shoes is:
[tex]\[ t(s) = 59.99s + 8.95 \][/tex]
In summary, the total cost [tex]\( t \)[/tex] for a single order of [tex]\( s \)[/tex] pairs of shoes can be calculated using the function [tex]\( t(s) = 59.99s + 8.95 \)[/tex].
1. Understand the Problem:
- Each pair of shoes costs [tex]$\$[/tex]59.99$.
- There is a flat rate shipping fee of [tex]$\$[/tex]8.95$ irrespective of the number of pairs of shoes purchased.
2. Identify the Components of the Linear Function:
- The cost of \( s \) pairs of shoes will be \( \$59.99 \times s \).
- The flat rate shipping fee is a constant \( \$8.95 \).
3. Formulate the Linear Function:
A linear function can be written in the form \( t(s) = ms + c \), where \( m \) is the rate of change and \( c \) is the y-intercept (or constant term).
- Here, \( m \), the rate of change, is \( \$59.99 \) because this is the cost per pair of shoes.
- The constant term \( c \) is the flat shipping fee, which is \( \$8.95 \).
4. Write the Function:
The total cost \( t \) for \( s \) pairs of shoes can be modeled by the linear function:
[tex]\[ t(s) = 59.99s + 8.95 \][/tex]
5. Conclusion:
Thus, the linear function that models the total cost \( t \) given \( s \) pairs of shoes is:
[tex]\[ t(s) = 59.99s + 8.95 \][/tex]
In summary, the total cost [tex]\( t \)[/tex] for a single order of [tex]\( s \)[/tex] pairs of shoes can be calculated using the function [tex]\( t(s) = 59.99s + 8.95 \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.