Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve for the expression \( z = \sqrt{5} - \sqrt{3i} \), we need to find the values for the square roots involved and understand the properties of complex numbers. Let's break it down step-by-step.
1. Square root of 5:
- The square root of 5 is a straightforward real number. \(\sqrt{5} \approx 2.236\).
2. Square root of \(3i\):
- To find the square root of a complex number, we need to convert \(3i\) into its polar form.
- Recall that \(3i = 0 + 3i\). The modulus \( r \) of \( 3i \) is \(|3i| = 3\).
- The argument \( \theta \) (also known as the angle) for \( 3i \) is \( \pi/2 \) because it lies on the positive imaginary axis.
- Thus, \( 3i \) in polar form is \( 3(\cos(\pi/2) + i\sin(\pi/2)) \).
3. Square root in polar form:
- The square root of a complex number \( re^{i\theta} \) is given by \(\sqrt{r} e^{i\theta/2} \).
- Therefore, \( \sqrt{3i} = \sqrt{3} e^{i \pi/4} = \sqrt{3} (\cos(\pi/4) + i\sin(\pi/4)) \).
- Substituting the values, we get \( \sqrt{3} (\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}) \).
- This simplifies to \( \sqrt{3} \cdot \frac{1}{\sqrt{2}} + i \sqrt{3} \cdot \frac{1}{\sqrt{2}} \).
- Which can be further simplified to \( \sqrt{\frac{3}{2}} + i \sqrt{\frac{3}{2}} \)
- \(\sqrt{\frac{3}{2}} \approx 1.224 \).
Therefore, \( \sqrt{3i} \approx 1.224 + 1.224i \).
4. Combining the results:
- Now, substitute these values back into the original expression \( z = \sqrt{5} - \sqrt{3i} \).
- We get \( z \approx 2.236 - (1.224 + 1.224i) \).
- Distribute the negative sign: \( z \approx 2.236 - 1.224 - 1.224i \).
- Combine the real parts: \( 2.236 - 1.224 = 1.012 \).
- So, \( z \approx 1.012 - 1.224i \).
Thus, the solution to the expression \( z = \sqrt{5} - \sqrt{3i} \) is approximately:
[tex]\[ z \approx 1.0113231061082 - 1.22474487139159i \][/tex]
1. Square root of 5:
- The square root of 5 is a straightforward real number. \(\sqrt{5} \approx 2.236\).
2. Square root of \(3i\):
- To find the square root of a complex number, we need to convert \(3i\) into its polar form.
- Recall that \(3i = 0 + 3i\). The modulus \( r \) of \( 3i \) is \(|3i| = 3\).
- The argument \( \theta \) (also known as the angle) for \( 3i \) is \( \pi/2 \) because it lies on the positive imaginary axis.
- Thus, \( 3i \) in polar form is \( 3(\cos(\pi/2) + i\sin(\pi/2)) \).
3. Square root in polar form:
- The square root of a complex number \( re^{i\theta} \) is given by \(\sqrt{r} e^{i\theta/2} \).
- Therefore, \( \sqrt{3i} = \sqrt{3} e^{i \pi/4} = \sqrt{3} (\cos(\pi/4) + i\sin(\pi/4)) \).
- Substituting the values, we get \( \sqrt{3} (\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}) \).
- This simplifies to \( \sqrt{3} \cdot \frac{1}{\sqrt{2}} + i \sqrt{3} \cdot \frac{1}{\sqrt{2}} \).
- Which can be further simplified to \( \sqrt{\frac{3}{2}} + i \sqrt{\frac{3}{2}} \)
- \(\sqrt{\frac{3}{2}} \approx 1.224 \).
Therefore, \( \sqrt{3i} \approx 1.224 + 1.224i \).
4. Combining the results:
- Now, substitute these values back into the original expression \( z = \sqrt{5} - \sqrt{3i} \).
- We get \( z \approx 2.236 - (1.224 + 1.224i) \).
- Distribute the negative sign: \( z \approx 2.236 - 1.224 - 1.224i \).
- Combine the real parts: \( 2.236 - 1.224 = 1.012 \).
- So, \( z \approx 1.012 - 1.224i \).
Thus, the solution to the expression \( z = \sqrt{5} - \sqrt{3i} \) is approximately:
[tex]\[ z \approx 1.0113231061082 - 1.22474487139159i \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.