Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve for the expression \( z = \sqrt{5} - \sqrt{3i} \), we need to find the values for the square roots involved and understand the properties of complex numbers. Let's break it down step-by-step.
1. Square root of 5:
- The square root of 5 is a straightforward real number. \(\sqrt{5} \approx 2.236\).
2. Square root of \(3i\):
- To find the square root of a complex number, we need to convert \(3i\) into its polar form.
- Recall that \(3i = 0 + 3i\). The modulus \( r \) of \( 3i \) is \(|3i| = 3\).
- The argument \( \theta \) (also known as the angle) for \( 3i \) is \( \pi/2 \) because it lies on the positive imaginary axis.
- Thus, \( 3i \) in polar form is \( 3(\cos(\pi/2) + i\sin(\pi/2)) \).
3. Square root in polar form:
- The square root of a complex number \( re^{i\theta} \) is given by \(\sqrt{r} e^{i\theta/2} \).
- Therefore, \( \sqrt{3i} = \sqrt{3} e^{i \pi/4} = \sqrt{3} (\cos(\pi/4) + i\sin(\pi/4)) \).
- Substituting the values, we get \( \sqrt{3} (\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}) \).
- This simplifies to \( \sqrt{3} \cdot \frac{1}{\sqrt{2}} + i \sqrt{3} \cdot \frac{1}{\sqrt{2}} \).
- Which can be further simplified to \( \sqrt{\frac{3}{2}} + i \sqrt{\frac{3}{2}} \)
- \(\sqrt{\frac{3}{2}} \approx 1.224 \).
Therefore, \( \sqrt{3i} \approx 1.224 + 1.224i \).
4. Combining the results:
- Now, substitute these values back into the original expression \( z = \sqrt{5} - \sqrt{3i} \).
- We get \( z \approx 2.236 - (1.224 + 1.224i) \).
- Distribute the negative sign: \( z \approx 2.236 - 1.224 - 1.224i \).
- Combine the real parts: \( 2.236 - 1.224 = 1.012 \).
- So, \( z \approx 1.012 - 1.224i \).
Thus, the solution to the expression \( z = \sqrt{5} - \sqrt{3i} \) is approximately:
[tex]\[ z \approx 1.0113231061082 - 1.22474487139159i \][/tex]
1. Square root of 5:
- The square root of 5 is a straightforward real number. \(\sqrt{5} \approx 2.236\).
2. Square root of \(3i\):
- To find the square root of a complex number, we need to convert \(3i\) into its polar form.
- Recall that \(3i = 0 + 3i\). The modulus \( r \) of \( 3i \) is \(|3i| = 3\).
- The argument \( \theta \) (also known as the angle) for \( 3i \) is \( \pi/2 \) because it lies on the positive imaginary axis.
- Thus, \( 3i \) in polar form is \( 3(\cos(\pi/2) + i\sin(\pi/2)) \).
3. Square root in polar form:
- The square root of a complex number \( re^{i\theta} \) is given by \(\sqrt{r} e^{i\theta/2} \).
- Therefore, \( \sqrt{3i} = \sqrt{3} e^{i \pi/4} = \sqrt{3} (\cos(\pi/4) + i\sin(\pi/4)) \).
- Substituting the values, we get \( \sqrt{3} (\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}) \).
- This simplifies to \( \sqrt{3} \cdot \frac{1}{\sqrt{2}} + i \sqrt{3} \cdot \frac{1}{\sqrt{2}} \).
- Which can be further simplified to \( \sqrt{\frac{3}{2}} + i \sqrt{\frac{3}{2}} \)
- \(\sqrt{\frac{3}{2}} \approx 1.224 \).
Therefore, \( \sqrt{3i} \approx 1.224 + 1.224i \).
4. Combining the results:
- Now, substitute these values back into the original expression \( z = \sqrt{5} - \sqrt{3i} \).
- We get \( z \approx 2.236 - (1.224 + 1.224i) \).
- Distribute the negative sign: \( z \approx 2.236 - 1.224 - 1.224i \).
- Combine the real parts: \( 2.236 - 1.224 = 1.012 \).
- So, \( z \approx 1.012 - 1.224i \).
Thus, the solution to the expression \( z = \sqrt{5} - \sqrt{3i} \) is approximately:
[tex]\[ z \approx 1.0113231061082 - 1.22474487139159i \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.