Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the given problem, we need to simplify the expression:
[tex]\[ \frac{x^2 - x - 6}{x^2 + 6x - 27} \cdot \frac{x^2 + x - 72}{x^2 + 11x + 18} \][/tex]
### Step 1: Factorize Each Polynomial
First, we factorize each polynomial in the numerators and denominators.
- For the numerator \( x^2 - x - 6 \):
[tex]\[ x^2 - x - 6 = (x - 3)(x + 2) \][/tex]
- For the denominator \( x^2 + 6x - 27 \):
[tex]\[ x^2 + 6x - 27 = (x - 3)(x + 9) \][/tex]
- For the numerator \( x^2 + x - 72 \):
[tex]\[ x^2 + x - 72 = (x - 8)(x + 9) \][/tex]
- For the denominator \( x^2 + 11x + 18 \):
[tex]\[ x^2 + 11x + 18 = (x + 2)(x + 9) \][/tex]
### Step 2: Substitute the Factored Forms
Substitute the factored forms back into the expression:
[tex]\[ \frac{(x - 3)(x + 2)}{(x - 3)(x + 9)} \cdot \frac{(x - 8)(x + 9)}{(x + 2)(x + 9)} \][/tex]
### Step 3: Simplify the Expression
Next, we can simplify by canceling out common factors in the numerator and the denominator.
- The factor \((x - 3)\) occurs in both the numerator and the denominator of the first fraction and can be canceled.
- The factor \((x + 2)\) occurs in both the numerator of the first fraction and the denominator of the second fraction and can be canceled.
- The factor \((x + 9)\) occurs in both the numerator of the second fraction and the denominator of both the first and second fractions and can be canceled.
After canceling these factors, we are left with:
[tex]\[ \frac{(x - 8)}{(x + 9)} \][/tex]
### Final Result
The simplified expression, in factored form, is:
[tex]\[ \boxed{\frac{x - 8}{x + 9}} \][/tex]
[tex]\[ \frac{x^2 - x - 6}{x^2 + 6x - 27} \cdot \frac{x^2 + x - 72}{x^2 + 11x + 18} \][/tex]
### Step 1: Factorize Each Polynomial
First, we factorize each polynomial in the numerators and denominators.
- For the numerator \( x^2 - x - 6 \):
[tex]\[ x^2 - x - 6 = (x - 3)(x + 2) \][/tex]
- For the denominator \( x^2 + 6x - 27 \):
[tex]\[ x^2 + 6x - 27 = (x - 3)(x + 9) \][/tex]
- For the numerator \( x^2 + x - 72 \):
[tex]\[ x^2 + x - 72 = (x - 8)(x + 9) \][/tex]
- For the denominator \( x^2 + 11x + 18 \):
[tex]\[ x^2 + 11x + 18 = (x + 2)(x + 9) \][/tex]
### Step 2: Substitute the Factored Forms
Substitute the factored forms back into the expression:
[tex]\[ \frac{(x - 3)(x + 2)}{(x - 3)(x + 9)} \cdot \frac{(x - 8)(x + 9)}{(x + 2)(x + 9)} \][/tex]
### Step 3: Simplify the Expression
Next, we can simplify by canceling out common factors in the numerator and the denominator.
- The factor \((x - 3)\) occurs in both the numerator and the denominator of the first fraction and can be canceled.
- The factor \((x + 2)\) occurs in both the numerator of the first fraction and the denominator of the second fraction and can be canceled.
- The factor \((x + 9)\) occurs in both the numerator of the second fraction and the denominator of both the first and second fractions and can be canceled.
After canceling these factors, we are left with:
[tex]\[ \frac{(x - 8)}{(x + 9)} \][/tex]
### Final Result
The simplified expression, in factored form, is:
[tex]\[ \boxed{\frac{x - 8}{x + 9}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.