Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To simplify the given expression, we need to perform the operations step by step. Let's start from the given expression:
[tex]\[ \frac{\frac{3x^2 - 4x - 15}{4x^2 - 15x - 4}}{\frac{9x^2 + 21x + 10}{4x^2 + 13x + 3}} \][/tex]
First, we need to convert the division of fractions into multiplication by taking the reciprocal of the second fraction:
[tex]\[ \frac{3x^2 - 4x - 15}{4x^2 - 15x - 4} \times \frac{4x^2 + 13x + 3}{9x^2 + 21x + 10} \][/tex]
Next, let's factorize each polynomial.
Factorizing the numerators and denominators:
1. Factorize \(3x^2 - 4x - 15\):
[tex]\[ 3x^2 - 4x - 15 = (3x + 5)(x - 3) \][/tex]
2. Factorize \(4x^2 - 15x - 4\):
[tex]\[ 4x^2 - 15x - 4 = (4x + 1)(x - 4) \][/tex]
3. Factorize \(9x^2 + 21x + 10\):
[tex]\[ 9x^2 + 21x + 10 = (3x + 2)(3x + 5) \][/tex]
4. Factorize \(4x^2 + 13x + 3\):
[tex]\[ 4x^2 + 13x + 3 = (4x + 1)(x + 3) \][/tex]
Now, substitute the factored forms back into the expression:
[tex]\[ \frac{(3x + 5)(x - 3)}{(4x + 1)(x - 4)} \times \frac{(4x + 1)(x + 3)}{(3x + 2)(3x + 5)} \][/tex]
The expression can now be simplified by canceling out common factors from the numerator and the denominator. Specifically, \((4x + 1)\) and \((3x + 5)\) appear in both the numerator and the denominator:
[tex]\[ \frac{(3x + 5)(x - 3)}{(4x + 1)(x - 4)} \times \frac{(4x + 1)(x + 3)}{(3x + 2)(3x + 5)} = \frac{(x - 3)(x + 3)}{(x - 4)(3x + 2)} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \boxed{\frac{(x - 3)(x + 3)}{(x - 4)(3x + 2)}} \][/tex]
[tex]\[ \frac{\frac{3x^2 - 4x - 15}{4x^2 - 15x - 4}}{\frac{9x^2 + 21x + 10}{4x^2 + 13x + 3}} \][/tex]
First, we need to convert the division of fractions into multiplication by taking the reciprocal of the second fraction:
[tex]\[ \frac{3x^2 - 4x - 15}{4x^2 - 15x - 4} \times \frac{4x^2 + 13x + 3}{9x^2 + 21x + 10} \][/tex]
Next, let's factorize each polynomial.
Factorizing the numerators and denominators:
1. Factorize \(3x^2 - 4x - 15\):
[tex]\[ 3x^2 - 4x - 15 = (3x + 5)(x - 3) \][/tex]
2. Factorize \(4x^2 - 15x - 4\):
[tex]\[ 4x^2 - 15x - 4 = (4x + 1)(x - 4) \][/tex]
3. Factorize \(9x^2 + 21x + 10\):
[tex]\[ 9x^2 + 21x + 10 = (3x + 2)(3x + 5) \][/tex]
4. Factorize \(4x^2 + 13x + 3\):
[tex]\[ 4x^2 + 13x + 3 = (4x + 1)(x + 3) \][/tex]
Now, substitute the factored forms back into the expression:
[tex]\[ \frac{(3x + 5)(x - 3)}{(4x + 1)(x - 4)} \times \frac{(4x + 1)(x + 3)}{(3x + 2)(3x + 5)} \][/tex]
The expression can now be simplified by canceling out common factors from the numerator and the denominator. Specifically, \((4x + 1)\) and \((3x + 5)\) appear in both the numerator and the denominator:
[tex]\[ \frac{(3x + 5)(x - 3)}{(4x + 1)(x - 4)} \times \frac{(4x + 1)(x + 3)}{(3x + 2)(3x + 5)} = \frac{(x - 3)(x + 3)}{(x - 4)(3x + 2)} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \boxed{\frac{(x - 3)(x + 3)}{(x - 4)(3x + 2)}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.