At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To simplify the given expression, we need to perform the operations step by step. Let's start from the given expression:
[tex]\[ \frac{\frac{3x^2 - 4x - 15}{4x^2 - 15x - 4}}{\frac{9x^2 + 21x + 10}{4x^2 + 13x + 3}} \][/tex]
First, we need to convert the division of fractions into multiplication by taking the reciprocal of the second fraction:
[tex]\[ \frac{3x^2 - 4x - 15}{4x^2 - 15x - 4} \times \frac{4x^2 + 13x + 3}{9x^2 + 21x + 10} \][/tex]
Next, let's factorize each polynomial.
Factorizing the numerators and denominators:
1. Factorize \(3x^2 - 4x - 15\):
[tex]\[ 3x^2 - 4x - 15 = (3x + 5)(x - 3) \][/tex]
2. Factorize \(4x^2 - 15x - 4\):
[tex]\[ 4x^2 - 15x - 4 = (4x + 1)(x - 4) \][/tex]
3. Factorize \(9x^2 + 21x + 10\):
[tex]\[ 9x^2 + 21x + 10 = (3x + 2)(3x + 5) \][/tex]
4. Factorize \(4x^2 + 13x + 3\):
[tex]\[ 4x^2 + 13x + 3 = (4x + 1)(x + 3) \][/tex]
Now, substitute the factored forms back into the expression:
[tex]\[ \frac{(3x + 5)(x - 3)}{(4x + 1)(x - 4)} \times \frac{(4x + 1)(x + 3)}{(3x + 2)(3x + 5)} \][/tex]
The expression can now be simplified by canceling out common factors from the numerator and the denominator. Specifically, \((4x + 1)\) and \((3x + 5)\) appear in both the numerator and the denominator:
[tex]\[ \frac{(3x + 5)(x - 3)}{(4x + 1)(x - 4)} \times \frac{(4x + 1)(x + 3)}{(3x + 2)(3x + 5)} = \frac{(x - 3)(x + 3)}{(x - 4)(3x + 2)} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \boxed{\frac{(x - 3)(x + 3)}{(x - 4)(3x + 2)}} \][/tex]
[tex]\[ \frac{\frac{3x^2 - 4x - 15}{4x^2 - 15x - 4}}{\frac{9x^2 + 21x + 10}{4x^2 + 13x + 3}} \][/tex]
First, we need to convert the division of fractions into multiplication by taking the reciprocal of the second fraction:
[tex]\[ \frac{3x^2 - 4x - 15}{4x^2 - 15x - 4} \times \frac{4x^2 + 13x + 3}{9x^2 + 21x + 10} \][/tex]
Next, let's factorize each polynomial.
Factorizing the numerators and denominators:
1. Factorize \(3x^2 - 4x - 15\):
[tex]\[ 3x^2 - 4x - 15 = (3x + 5)(x - 3) \][/tex]
2. Factorize \(4x^2 - 15x - 4\):
[tex]\[ 4x^2 - 15x - 4 = (4x + 1)(x - 4) \][/tex]
3. Factorize \(9x^2 + 21x + 10\):
[tex]\[ 9x^2 + 21x + 10 = (3x + 2)(3x + 5) \][/tex]
4. Factorize \(4x^2 + 13x + 3\):
[tex]\[ 4x^2 + 13x + 3 = (4x + 1)(x + 3) \][/tex]
Now, substitute the factored forms back into the expression:
[tex]\[ \frac{(3x + 5)(x - 3)}{(4x + 1)(x - 4)} \times \frac{(4x + 1)(x + 3)}{(3x + 2)(3x + 5)} \][/tex]
The expression can now be simplified by canceling out common factors from the numerator and the denominator. Specifically, \((4x + 1)\) and \((3x + 5)\) appear in both the numerator and the denominator:
[tex]\[ \frac{(3x + 5)(x - 3)}{(4x + 1)(x - 4)} \times \frac{(4x + 1)(x + 3)}{(3x + 2)(3x + 5)} = \frac{(x - 3)(x + 3)}{(x - 4)(3x + 2)} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \boxed{\frac{(x - 3)(x + 3)}{(x - 4)(3x + 2)}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.