Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's rewrite the rational expression \(\frac{6t + 7}{30t + 35}\) with the denominator \(5s(6t + 7)\).
1. Factor the denominator of the original expression:
The given denominator is \( 30t + 35 \).
We can factor out a 5 from both terms:
[tex]\[ 30t + 35 = 5(6t + 7) \][/tex]
2. Rewrite the original rational expression with the factored denominator:
Expressing the original rational expression:
[tex]\[ \frac{6t + 7}{30t + 35} = \frac{6t + 7}{5(6t + 7)} \][/tex]
3. Match the new denominator:
We need the new equivalent denominator to be \( 5s(6t + 7) \).
Observe that the new denominator is obtained by multiplying \( 5(6t + 7) \) by \( s \):
[tex]\[ 5(6t + 7) \rightarrow 5s(6t + 7) \][/tex]
4. Adjust the numerator to maintain the equivalence:
To keep the expression equivalent when adjusting the denominator, we must multiply the numerator by \( s \):
[tex]\[ \frac{6t + 7}{5(6t + 7)} = \frac{s \cdot (6t + 7)}{5s(6t + 7)} \][/tex]
So, the rewritten rational expression with the new denominator is:
[tex]\[ \frac{6t + 7}{30t + 35} = \frac{s(6t + 7)}{5s(6t + 7)} \][/tex]
Thus, the resulting step-by-step process shows that:
[tex]\[ \frac{6t + 7}{30t + 35} = \frac{s(6t + 7)}{5s(6t + 7)} \][/tex]
And that completes the solution!
1. Factor the denominator of the original expression:
The given denominator is \( 30t + 35 \).
We can factor out a 5 from both terms:
[tex]\[ 30t + 35 = 5(6t + 7) \][/tex]
2. Rewrite the original rational expression with the factored denominator:
Expressing the original rational expression:
[tex]\[ \frac{6t + 7}{30t + 35} = \frac{6t + 7}{5(6t + 7)} \][/tex]
3. Match the new denominator:
We need the new equivalent denominator to be \( 5s(6t + 7) \).
Observe that the new denominator is obtained by multiplying \( 5(6t + 7) \) by \( s \):
[tex]\[ 5(6t + 7) \rightarrow 5s(6t + 7) \][/tex]
4. Adjust the numerator to maintain the equivalence:
To keep the expression equivalent when adjusting the denominator, we must multiply the numerator by \( s \):
[tex]\[ \frac{6t + 7}{5(6t + 7)} = \frac{s \cdot (6t + 7)}{5s(6t + 7)} \][/tex]
So, the rewritten rational expression with the new denominator is:
[tex]\[ \frac{6t + 7}{30t + 35} = \frac{s(6t + 7)}{5s(6t + 7)} \][/tex]
Thus, the resulting step-by-step process shows that:
[tex]\[ \frac{6t + 7}{30t + 35} = \frac{s(6t + 7)}{5s(6t + 7)} \][/tex]
And that completes the solution!
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.