Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the value of \( b \) for the quadratic function \( f(x) = 3x^2 + bx + 4 \) given that the axis of symmetry is \( x = \frac{3}{2} \), we will use the formula for the axis of symmetry of a quadratic function.
The formula for the axis of symmetry for a quadratic function \( f(x) = ax^2 + bx + c \) is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, the function is \( f(x) = 3x^2 + bx + 4 \). Therefore, \( a = 3 \) and \( b \) is the coefficient we need to find. We know the axis of symmetry is \( x = \frac{3}{2} \).
Substitute \( x \) and \( a \) into the axis of symmetry formula:
[tex]\[ \frac{3}{2} = -\frac{b}{2 \cdot 3} \][/tex]
Simplify the right side:
[tex]\[ \frac{3}{2} = -\frac{b}{6} \][/tex]
To isolate \( b \), we will multiply both sides of the equation by 6:
[tex]\[ 6 \cdot \frac{3}{2} = -b \][/tex]
Simplify the left side:
[tex]\[ 9 = -b \][/tex]
Therefore, we multiply both sides by -1 to solve for \( b \):
[tex]\[ b = -9 \][/tex]
Thus, the value of \( b \) is:
[tex]\[ \boxed{-9} \][/tex]
The formula for the axis of symmetry for a quadratic function \( f(x) = ax^2 + bx + c \) is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, the function is \( f(x) = 3x^2 + bx + 4 \). Therefore, \( a = 3 \) and \( b \) is the coefficient we need to find. We know the axis of symmetry is \( x = \frac{3}{2} \).
Substitute \( x \) and \( a \) into the axis of symmetry formula:
[tex]\[ \frac{3}{2} = -\frac{b}{2 \cdot 3} \][/tex]
Simplify the right side:
[tex]\[ \frac{3}{2} = -\frac{b}{6} \][/tex]
To isolate \( b \), we will multiply both sides of the equation by 6:
[tex]\[ 6 \cdot \frac{3}{2} = -b \][/tex]
Simplify the left side:
[tex]\[ 9 = -b \][/tex]
Therefore, we multiply both sides by -1 to solve for \( b \):
[tex]\[ b = -9 \][/tex]
Thus, the value of \( b \) is:
[tex]\[ \boxed{-9} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.