At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's solve this problem step-by-step.
Step 1: Identify given variables
- Source charge, \( q = 3 \times 10^{-6} \) C (Converting \( 3 \mu C \) to Coulombs)
- Electric field, \( E = 2.86 \times 10^5 \) N/C
- Coulomb's constant, \( k = 8.99 \times 10^9 \) N·m²/C²
Step 2: Understand the relationship
The electric field \( E \) created by a point charge \( q \) at a distance \( r \) is given by:
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
Step 3: Rearrange the equation to solve for \( r \)
[tex]\[ r^2 = \frac{k \cdot |q|}{E} \][/tex]
[tex]\[ r = \sqrt{\frac{k \cdot |q|}{E}} \][/tex]
Step 4: Substitute the known values into the equation
[tex]\[ r = \sqrt{\frac{(8.99 \times 10^9) \cdot (3 \times 10^{-6})}{2.86 \times 10^5}} \][/tex]
Step 5: Perform the calculations
First, calculate the numerator inside the square root:
[tex]\[ (8.99 \times 10^9) \cdot (3 \times 10^{-6}) = 26.97 \times 10^{3} \][/tex]
Then, divide by the electric field:
[tex]\[ \frac{26.97 \times 10^{3}}{2.86 \times 10^5} \approx 0.09435 \][/tex]
Finally, take the square root of this value:
[tex]\[ r = \sqrt{0.09435} \approx 0.30708418927176845 \][/tex]
Step 6: Round the result to the nearest hundredth
[tex]\[ r \approx 0.31 \][/tex]
So, the distance of the test charge from the source charge is approximately 0.31 meters to the nearest hundredth.
Step 1: Identify given variables
- Source charge, \( q = 3 \times 10^{-6} \) C (Converting \( 3 \mu C \) to Coulombs)
- Electric field, \( E = 2.86 \times 10^5 \) N/C
- Coulomb's constant, \( k = 8.99 \times 10^9 \) N·m²/C²
Step 2: Understand the relationship
The electric field \( E \) created by a point charge \( q \) at a distance \( r \) is given by:
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
Step 3: Rearrange the equation to solve for \( r \)
[tex]\[ r^2 = \frac{k \cdot |q|}{E} \][/tex]
[tex]\[ r = \sqrt{\frac{k \cdot |q|}{E}} \][/tex]
Step 4: Substitute the known values into the equation
[tex]\[ r = \sqrt{\frac{(8.99 \times 10^9) \cdot (3 \times 10^{-6})}{2.86 \times 10^5}} \][/tex]
Step 5: Perform the calculations
First, calculate the numerator inside the square root:
[tex]\[ (8.99 \times 10^9) \cdot (3 \times 10^{-6}) = 26.97 \times 10^{3} \][/tex]
Then, divide by the electric field:
[tex]\[ \frac{26.97 \times 10^{3}}{2.86 \times 10^5} \approx 0.09435 \][/tex]
Finally, take the square root of this value:
[tex]\[ r = \sqrt{0.09435} \approx 0.30708418927176845 \][/tex]
Step 6: Round the result to the nearest hundredth
[tex]\[ r \approx 0.31 \][/tex]
So, the distance of the test charge from the source charge is approximately 0.31 meters to the nearest hundredth.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.