Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

A source charge of [tex]$3 \mu C[tex]$[/tex] generates an electric field of [tex]$[/tex]2.86 \times 10^5 \, N/C$[/tex] at the location of a test charge. What is the distance, to the nearest hundredth, of the test charge from the source charge?

[tex]k = 8.99 \times 10^9 \, N \cdot m^2/C^2[/tex]

[tex]\boxed{\text{m}}[/tex]

Sagot :

Sure, let's solve this problem step-by-step.

Step 1: Identify given variables
- Source charge, \( q = 3 \times 10^{-6} \) C (Converting \( 3 \mu C \) to Coulombs)
- Electric field, \( E = 2.86 \times 10^5 \) N/C
- Coulomb's constant, \( k = 8.99 \times 10^9 \) N·m²/C²

Step 2: Understand the relationship
The electric field \( E \) created by a point charge \( q \) at a distance \( r \) is given by:
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]

Step 3: Rearrange the equation to solve for \( r \)
[tex]\[ r^2 = \frac{k \cdot |q|}{E} \][/tex]
[tex]\[ r = \sqrt{\frac{k \cdot |q|}{E}} \][/tex]

Step 4: Substitute the known values into the equation
[tex]\[ r = \sqrt{\frac{(8.99 \times 10^9) \cdot (3 \times 10^{-6})}{2.86 \times 10^5}} \][/tex]

Step 5: Perform the calculations
First, calculate the numerator inside the square root:
[tex]\[ (8.99 \times 10^9) \cdot (3 \times 10^{-6}) = 26.97 \times 10^{3} \][/tex]

Then, divide by the electric field:
[tex]\[ \frac{26.97 \times 10^{3}}{2.86 \times 10^5} \approx 0.09435 \][/tex]

Finally, take the square root of this value:
[tex]\[ r = \sqrt{0.09435} \approx 0.30708418927176845 \][/tex]

Step 6: Round the result to the nearest hundredth
[tex]\[ r \approx 0.31 \][/tex]

So, the distance of the test charge from the source charge is approximately 0.31 meters to the nearest hundredth.