Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve this problem step-by-step.
Step 1: Identify given variables
- Source charge, \( q = 3 \times 10^{-6} \) C (Converting \( 3 \mu C \) to Coulombs)
- Electric field, \( E = 2.86 \times 10^5 \) N/C
- Coulomb's constant, \( k = 8.99 \times 10^9 \) N·m²/C²
Step 2: Understand the relationship
The electric field \( E \) created by a point charge \( q \) at a distance \( r \) is given by:
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
Step 3: Rearrange the equation to solve for \( r \)
[tex]\[ r^2 = \frac{k \cdot |q|}{E} \][/tex]
[tex]\[ r = \sqrt{\frac{k \cdot |q|}{E}} \][/tex]
Step 4: Substitute the known values into the equation
[tex]\[ r = \sqrt{\frac{(8.99 \times 10^9) \cdot (3 \times 10^{-6})}{2.86 \times 10^5}} \][/tex]
Step 5: Perform the calculations
First, calculate the numerator inside the square root:
[tex]\[ (8.99 \times 10^9) \cdot (3 \times 10^{-6}) = 26.97 \times 10^{3} \][/tex]
Then, divide by the electric field:
[tex]\[ \frac{26.97 \times 10^{3}}{2.86 \times 10^5} \approx 0.09435 \][/tex]
Finally, take the square root of this value:
[tex]\[ r = \sqrt{0.09435} \approx 0.30708418927176845 \][/tex]
Step 6: Round the result to the nearest hundredth
[tex]\[ r \approx 0.31 \][/tex]
So, the distance of the test charge from the source charge is approximately 0.31 meters to the nearest hundredth.
Step 1: Identify given variables
- Source charge, \( q = 3 \times 10^{-6} \) C (Converting \( 3 \mu C \) to Coulombs)
- Electric field, \( E = 2.86 \times 10^5 \) N/C
- Coulomb's constant, \( k = 8.99 \times 10^9 \) N·m²/C²
Step 2: Understand the relationship
The electric field \( E \) created by a point charge \( q \) at a distance \( r \) is given by:
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
Step 3: Rearrange the equation to solve for \( r \)
[tex]\[ r^2 = \frac{k \cdot |q|}{E} \][/tex]
[tex]\[ r = \sqrt{\frac{k \cdot |q|}{E}} \][/tex]
Step 4: Substitute the known values into the equation
[tex]\[ r = \sqrt{\frac{(8.99 \times 10^9) \cdot (3 \times 10^{-6})}{2.86 \times 10^5}} \][/tex]
Step 5: Perform the calculations
First, calculate the numerator inside the square root:
[tex]\[ (8.99 \times 10^9) \cdot (3 \times 10^{-6}) = 26.97 \times 10^{3} \][/tex]
Then, divide by the electric field:
[tex]\[ \frac{26.97 \times 10^{3}}{2.86 \times 10^5} \approx 0.09435 \][/tex]
Finally, take the square root of this value:
[tex]\[ r = \sqrt{0.09435} \approx 0.30708418927176845 \][/tex]
Step 6: Round the result to the nearest hundredth
[tex]\[ r \approx 0.31 \][/tex]
So, the distance of the test charge from the source charge is approximately 0.31 meters to the nearest hundredth.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.