Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's walk through the steps to find the value of the correlation coefficient \( r \) from the given data.
### Step 1: Calculate the Standard Deviations
To find the correlation coefficient, we first need to calculate the standard deviations of \( x \) and \( y \).
Given:
- Average \( x \) = 60
- Average \( y \) = 95
- Sum of squares of deviations for \( x \) = 920
- Sum of squares of deviations for \( y \) = 1050
- The sum of product of deviations = -545
We assume the sample size \( n \) is such that \( n-1 = 10 \), meaning \( n = 11 \). With \( n-1 \) as our value (which is typically used in the calculation of standard deviation for samples), we compute the standard deviations.
The formula for the standard deviation of \( x \) is:
[tex]\[ \sigma_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \][/tex]
For \( x \):
[tex]\[ \sigma_x = \sqrt{\frac{920}{10}} \][/tex]
[tex]\[ \sigma_x = \sqrt{92} \][/tex]
[tex]\[ \sigma_x \approx 9.59 \][/tex]
For \( y \):
[tex]\[ \sigma_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}} \][/tex]
[tex]\[ \sigma_y = \sqrt{\frac{1050}{10}} \][/tex]
[tex]\[ \sigma_y = \sqrt{105} \][/tex]
[tex]\[ \sigma_y \approx 10.25 \][/tex]
### Step 2: Calculate the Correlation Coefficient \( r \)
The formula for the correlation coefficient \( r \) is:
[tex]\[ r = \frac{\sum((x_i - \bar{x})(y_i - \bar{y}))}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \][/tex]
Given the sum of product of deviations:
[tex]\[ \sum ((x_i - \bar{x})(y_i - \bar{y})) = -545 \][/tex]
We use this sum of product of deviations along with the standard deviations calculated above:
[tex]\[ r = \frac{\sum((x_i - \bar{x})(y_i - \bar{y}))}{(n-1) \sigma_x \sigma_y} \][/tex]
Substitute the values:
[tex]\[ r = \frac{-545}{10 \times 9.59 \times 10.25} \][/tex]
Calculate the denominator:
[tex]\[ 9.59 \times 10.25 = 98.2975 \][/tex]
[tex]\[ 10 \times 98.2975 = 982.975 \][/tex]
Now, compute \( r \):
[tex]\[ r = \frac{-545}{982.975} \][/tex]
[tex]\[ r \approx -0.5545 \][/tex]
### Conclusion
Therefore, the correlation coefficient [tex]\( r \approx -0.5545 \)[/tex].
### Step 1: Calculate the Standard Deviations
To find the correlation coefficient, we first need to calculate the standard deviations of \( x \) and \( y \).
Given:
- Average \( x \) = 60
- Average \( y \) = 95
- Sum of squares of deviations for \( x \) = 920
- Sum of squares of deviations for \( y \) = 1050
- The sum of product of deviations = -545
We assume the sample size \( n \) is such that \( n-1 = 10 \), meaning \( n = 11 \). With \( n-1 \) as our value (which is typically used in the calculation of standard deviation for samples), we compute the standard deviations.
The formula for the standard deviation of \( x \) is:
[tex]\[ \sigma_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \][/tex]
For \( x \):
[tex]\[ \sigma_x = \sqrt{\frac{920}{10}} \][/tex]
[tex]\[ \sigma_x = \sqrt{92} \][/tex]
[tex]\[ \sigma_x \approx 9.59 \][/tex]
For \( y \):
[tex]\[ \sigma_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}} \][/tex]
[tex]\[ \sigma_y = \sqrt{\frac{1050}{10}} \][/tex]
[tex]\[ \sigma_y = \sqrt{105} \][/tex]
[tex]\[ \sigma_y \approx 10.25 \][/tex]
### Step 2: Calculate the Correlation Coefficient \( r \)
The formula for the correlation coefficient \( r \) is:
[tex]\[ r = \frac{\sum((x_i - \bar{x})(y_i - \bar{y}))}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \][/tex]
Given the sum of product of deviations:
[tex]\[ \sum ((x_i - \bar{x})(y_i - \bar{y})) = -545 \][/tex]
We use this sum of product of deviations along with the standard deviations calculated above:
[tex]\[ r = \frac{\sum((x_i - \bar{x})(y_i - \bar{y}))}{(n-1) \sigma_x \sigma_y} \][/tex]
Substitute the values:
[tex]\[ r = \frac{-545}{10 \times 9.59 \times 10.25} \][/tex]
Calculate the denominator:
[tex]\[ 9.59 \times 10.25 = 98.2975 \][/tex]
[tex]\[ 10 \times 98.2975 = 982.975 \][/tex]
Now, compute \( r \):
[tex]\[ r = \frac{-545}{982.975} \][/tex]
[tex]\[ r \approx -0.5545 \][/tex]
### Conclusion
Therefore, the correlation coefficient [tex]\( r \approx -0.5545 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.