Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The first error identified in the proof occurs in the step:
[tex]\[ z^2 = h^2 + r^2 \][/tex]
Here’s a detailed, step-by-step explanation leading up to this error and why it is incorrect:
1. Given:
Let \(\Delta XYZ\) be a triangle with an altitude \( h \) from vertex \( X \).
2. Define sine and cosine:
[tex]\[ \sin(X) = \frac{h}{z}, \quad \cos(X) = \frac{r}{z} \][/tex]
By definitions of sine and cosine in a right triangle.
3. Multiplication property of equality:
[tex]\[ z \cdot \sin(X) = h, \quad z \cdot \cos(X) = r \][/tex]
This follows directly from the definitions.
4. Substitution property of equality:
[tex]\[ x^2 = h^2 + (y - r)^2 \][/tex]
5. Substitution: Replace \( h \) and \( r \) using previous definitions:
[tex]\[ x^2 = (z \cdot \sin(X))^2 + (y - z \cdot \cos(X))^2 \][/tex]
6. Expand:
[tex]\[ x^2 = z^2 \sin^2(X) + y^2 - 2 y z \cos(X) + z^2 \cos^2(X) \][/tex]
7. Factoring out:
[tex]\[ x^2 = z^2 [\sin^2(X) + \cos^2(X)] + y^2 - 2 y z \cos(X) \][/tex]
8. Square both sides:
[tex]\[ \sin^2(X) = \frac{h^2}{z^2}, \quad \cos^2(X) = \frac{r^2}{z^2} \][/tex]
9. Substitution:
[tex]\[ x^2 = z^2 \left( \frac{h^2}{z^2} + \frac{r^2}{z^2} \right) + y^2 - 2 y z \cos(X) \][/tex]
10. Combine fractions:
[tex]\[ x^2 = z^2 \left( \frac{h^2 + r^2}{z^2} \right) + y^2 - 2 y z \cos(X) \][/tex]
11. Error – Application of Pythagorean theorem:
[tex]\[ z^2 = h^2 + r^2 \][/tex]
The Pythagorean theorem \((a^2 + b^2 = c^2)\) is incorrectly applied here. It pertains to the sides of a right triangle, but in this context \( z^2 = h^2 + r^2 \) is not accurate as \( h \) and \( r \) typically correspond to different components of the triangle, not directly related by the Pythagorean theorem outside a specific right triangle setup.
Therefore, the step [tex]\( z^2 = h^2 + r^2 \)[/tex] is the first error in the proof, as it incorrectly applies the Pythagorean theorem to parameters that do not conform to its specific conditions.
[tex]\[ z^2 = h^2 + r^2 \][/tex]
Here’s a detailed, step-by-step explanation leading up to this error and why it is incorrect:
1. Given:
Let \(\Delta XYZ\) be a triangle with an altitude \( h \) from vertex \( X \).
2. Define sine and cosine:
[tex]\[ \sin(X) = \frac{h}{z}, \quad \cos(X) = \frac{r}{z} \][/tex]
By definitions of sine and cosine in a right triangle.
3. Multiplication property of equality:
[tex]\[ z \cdot \sin(X) = h, \quad z \cdot \cos(X) = r \][/tex]
This follows directly from the definitions.
4. Substitution property of equality:
[tex]\[ x^2 = h^2 + (y - r)^2 \][/tex]
5. Substitution: Replace \( h \) and \( r \) using previous definitions:
[tex]\[ x^2 = (z \cdot \sin(X))^2 + (y - z \cdot \cos(X))^2 \][/tex]
6. Expand:
[tex]\[ x^2 = z^2 \sin^2(X) + y^2 - 2 y z \cos(X) + z^2 \cos^2(X) \][/tex]
7. Factoring out:
[tex]\[ x^2 = z^2 [\sin^2(X) + \cos^2(X)] + y^2 - 2 y z \cos(X) \][/tex]
8. Square both sides:
[tex]\[ \sin^2(X) = \frac{h^2}{z^2}, \quad \cos^2(X) = \frac{r^2}{z^2} \][/tex]
9. Substitution:
[tex]\[ x^2 = z^2 \left( \frac{h^2}{z^2} + \frac{r^2}{z^2} \right) + y^2 - 2 y z \cos(X) \][/tex]
10. Combine fractions:
[tex]\[ x^2 = z^2 \left( \frac{h^2 + r^2}{z^2} \right) + y^2 - 2 y z \cos(X) \][/tex]
11. Error – Application of Pythagorean theorem:
[tex]\[ z^2 = h^2 + r^2 \][/tex]
The Pythagorean theorem \((a^2 + b^2 = c^2)\) is incorrectly applied here. It pertains to the sides of a right triangle, but in this context \( z^2 = h^2 + r^2 \) is not accurate as \( h \) and \( r \) typically correspond to different components of the triangle, not directly related by the Pythagorean theorem outside a specific right triangle setup.
Therefore, the step [tex]\( z^2 = h^2 + r^2 \)[/tex] is the first error in the proof, as it incorrectly applies the Pythagorean theorem to parameters that do not conform to its specific conditions.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.