Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-3 & -15 \\
\hline
-2 & -5 \\
\hline
-1 & 0 \\
\hline
0 & 5 \\
\hline
1 & 0 \\
\hline
2 & -5 \\
\hline
\end{tabular}

Which is a valid prediction about the continuous function [tex]$f(x)$[/tex]?

A. [tex]$f(x) \leq 0$[/tex] over the interval [tex]$(-\infty, \infty)$[/tex].
B. [tex]$f(x) \ \textgreater \ 0$[/tex] over the interval [tex]$(-1, \infty)$[/tex].
C. [tex]$f(x) \geq 0$[/tex] over the interval [tex]$[-1,1]$[/tex].
D. [tex]$f(x) \ \textless \ 0$[/tex] over the interval [tex]$(0,2)$[/tex].


Sagot :

Let's analyze the predictions step by step based on the given function values.

### Given Data:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -3 & -15 \\ \hline -2 & -5 \\ \hline -1 & 0 \\ \hline 0 & 5 \\ \hline 1 & 0 \\ \hline 2 & -5 \\ \hline \end{array} \][/tex]

### Evaluate the Statements:

1. Statement: \( f(x) \leq 0 \) over the interval \( (-\infty, \infty) \)
- We need to check if \( f(x) \) is always less than or equal to zero for all \( x \).
- At \( x = 0 \), \( f(0) = 5 \), which is greater than 0.
- Therefore, this statement is False.

2. Statement: \( f(x) > 0 \) over the interval \( (-1, \infty) \)
- We need to check if \( f(x) \) is always greater than zero for \( x \) in the interval \( (-1, \infty) \).
- At \( x = -1 \), \( f(-1) = 0 \), which is not greater than 0.
- At \( x = 1 \), \( f(1) = 0 \), which is also not greater than 0.
- Therefore, this statement is False.

3. Statement: \( f(x) \geq 0 \) over the interval \( [-1, 1] \)
- We need to check if \( f(x) \) is always greater than or equal to zero for \( x \) in the interval \( [-1, 1] \).
- At \( x = -1 \), \( f(-1) = 0 \), which is equal to 0.
- At \( x = 0 \), \( f(0) = 5 \), which is greater than 0.
- At \( x = 1 \), \( f(1) = 0 \), which is equal to 0.
- Therefore, this statement is True.

4. Statement: \( f(x) < 0 \) over the interval \( (0, 2) \)
- We need to check if \( f(x) \) is always less than zero for \( x \) in the open interval \( (0, 2) \).
- Although \( f(2) = -5 \), we need to consider the open interval.
- As we observe, there are no given values between \(0\) and \(2\) to contradict this.
- Therefore, this statement is True.

### Conclusion:
The valid predictions about the continuous function \( f(x) \) are:

- \( f(x) \geq 0 \) over the interval \([-1,1]\)
- \( f(x) < 0 \) over the interval \((0,2)\)

Thus, our predictions are:
- \( f(x) \leq 0 \) over the interval \( (-\infty, \infty) \) is False
- \( f(x) > 0 \) over the interval \( (-1, \infty) \) is False
- \( f(x) \geq 0 \) over the interval \([-1,1]\) is True
- [tex]\( f(x) < 0 \)[/tex] over the interval [tex]\((0,2)\)[/tex] is True
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.