Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's solve this step-by-step.
### Problem Statement:
A copper rod with a mass of \(200.0 \, g\) is heated from an initial temperature of \(20.0^{\circ}C\) to a final temperature of \(40.0^{\circ}C\). It absorbs \(1,540 \, J\) of heat during this process. We need to determine the specific heat capacity (\(C_p\)) of the copper rod using the formula:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
#### Given:
1. Mass (\(m\)): \(200.0 \, g\)
2. Initial temperature (\(T_i\)): \(20.0^{\circ}C\)
3. Final temperature (\(T_f\)): \(40.0^{\circ}C\)
4. Heat added (\(q\)): \(1,540 \, J\)
### Step-by-Step Solution:
1. Calculate the change in temperature (\(\Delta T\)):
[tex]\[ \Delta T = T_f - T_i \][/tex]
[tex]\[ \Delta T = 40.0^{\circ}C - 20.0^{\circ}C \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
2. Rearrange the formula to solve for the specific heat capacity \((C_p)\):
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
3. Substitute the values into the formula:
[tex]\[ q = 1,540 \, J \][/tex]
[tex]\[ m = 200.0 \, g \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
[tex]\[ C_p = \frac{1,540 \, J}{200.0 \, g \cdot 20.0^{\circ}C} \][/tex]
4. Calculate the specific heat capacity \(C_p\):
[tex]\[ C_p = \frac{1,540}{200.0 \cdot 20.0} \][/tex]
[tex]\[ C_p = \frac{1,540}{4,000} \][/tex]
[tex]\[ C_p = 0.385 \, \text{J/(g·°C)} \][/tex]
### Conclusion:
The specific heat capacity of copper is \(0.385 \, \text{J/(g·°C)}\).
From the provided options:
- \(0.0130 \, \text{J/(g·°C)}\)
- \(0.0649 \, \text{J/(g·°C)}\)
- \(0.193 \, \text{J/(g·°C)}\)
- \(0.385 \, \text{J/(g·°C)}\)
The correct answer is:
[tex]\[ \boxed{0.385 \, \text{J/(g·°C)} } \][/tex]
### Problem Statement:
A copper rod with a mass of \(200.0 \, g\) is heated from an initial temperature of \(20.0^{\circ}C\) to a final temperature of \(40.0^{\circ}C\). It absorbs \(1,540 \, J\) of heat during this process. We need to determine the specific heat capacity (\(C_p\)) of the copper rod using the formula:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
#### Given:
1. Mass (\(m\)): \(200.0 \, g\)
2. Initial temperature (\(T_i\)): \(20.0^{\circ}C\)
3. Final temperature (\(T_f\)): \(40.0^{\circ}C\)
4. Heat added (\(q\)): \(1,540 \, J\)
### Step-by-Step Solution:
1. Calculate the change in temperature (\(\Delta T\)):
[tex]\[ \Delta T = T_f - T_i \][/tex]
[tex]\[ \Delta T = 40.0^{\circ}C - 20.0^{\circ}C \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
2. Rearrange the formula to solve for the specific heat capacity \((C_p)\):
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
3. Substitute the values into the formula:
[tex]\[ q = 1,540 \, J \][/tex]
[tex]\[ m = 200.0 \, g \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
[tex]\[ C_p = \frac{1,540 \, J}{200.0 \, g \cdot 20.0^{\circ}C} \][/tex]
4. Calculate the specific heat capacity \(C_p\):
[tex]\[ C_p = \frac{1,540}{200.0 \cdot 20.0} \][/tex]
[tex]\[ C_p = \frac{1,540}{4,000} \][/tex]
[tex]\[ C_p = 0.385 \, \text{J/(g·°C)} \][/tex]
### Conclusion:
The specific heat capacity of copper is \(0.385 \, \text{J/(g·°C)}\).
From the provided options:
- \(0.0130 \, \text{J/(g·°C)}\)
- \(0.0649 \, \text{J/(g·°C)}\)
- \(0.193 \, \text{J/(g·°C)}\)
- \(0.385 \, \text{J/(g·°C)}\)
The correct answer is:
[tex]\[ \boxed{0.385 \, \text{J/(g·°C)} } \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.