Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's solve this step-by-step.
### Problem Statement:
A copper rod with a mass of \(200.0 \, g\) is heated from an initial temperature of \(20.0^{\circ}C\) to a final temperature of \(40.0^{\circ}C\). It absorbs \(1,540 \, J\) of heat during this process. We need to determine the specific heat capacity (\(C_p\)) of the copper rod using the formula:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
#### Given:
1. Mass (\(m\)): \(200.0 \, g\)
2. Initial temperature (\(T_i\)): \(20.0^{\circ}C\)
3. Final temperature (\(T_f\)): \(40.0^{\circ}C\)
4. Heat added (\(q\)): \(1,540 \, J\)
### Step-by-Step Solution:
1. Calculate the change in temperature (\(\Delta T\)):
[tex]\[ \Delta T = T_f - T_i \][/tex]
[tex]\[ \Delta T = 40.0^{\circ}C - 20.0^{\circ}C \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
2. Rearrange the formula to solve for the specific heat capacity \((C_p)\):
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
3. Substitute the values into the formula:
[tex]\[ q = 1,540 \, J \][/tex]
[tex]\[ m = 200.0 \, g \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
[tex]\[ C_p = \frac{1,540 \, J}{200.0 \, g \cdot 20.0^{\circ}C} \][/tex]
4. Calculate the specific heat capacity \(C_p\):
[tex]\[ C_p = \frac{1,540}{200.0 \cdot 20.0} \][/tex]
[tex]\[ C_p = \frac{1,540}{4,000} \][/tex]
[tex]\[ C_p = 0.385 \, \text{J/(g·°C)} \][/tex]
### Conclusion:
The specific heat capacity of copper is \(0.385 \, \text{J/(g·°C)}\).
From the provided options:
- \(0.0130 \, \text{J/(g·°C)}\)
- \(0.0649 \, \text{J/(g·°C)}\)
- \(0.193 \, \text{J/(g·°C)}\)
- \(0.385 \, \text{J/(g·°C)}\)
The correct answer is:
[tex]\[ \boxed{0.385 \, \text{J/(g·°C)} } \][/tex]
### Problem Statement:
A copper rod with a mass of \(200.0 \, g\) is heated from an initial temperature of \(20.0^{\circ}C\) to a final temperature of \(40.0^{\circ}C\). It absorbs \(1,540 \, J\) of heat during this process. We need to determine the specific heat capacity (\(C_p\)) of the copper rod using the formula:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
#### Given:
1. Mass (\(m\)): \(200.0 \, g\)
2. Initial temperature (\(T_i\)): \(20.0^{\circ}C\)
3. Final temperature (\(T_f\)): \(40.0^{\circ}C\)
4. Heat added (\(q\)): \(1,540 \, J\)
### Step-by-Step Solution:
1. Calculate the change in temperature (\(\Delta T\)):
[tex]\[ \Delta T = T_f - T_i \][/tex]
[tex]\[ \Delta T = 40.0^{\circ}C - 20.0^{\circ}C \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
2. Rearrange the formula to solve for the specific heat capacity \((C_p)\):
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
3. Substitute the values into the formula:
[tex]\[ q = 1,540 \, J \][/tex]
[tex]\[ m = 200.0 \, g \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
[tex]\[ C_p = \frac{1,540 \, J}{200.0 \, g \cdot 20.0^{\circ}C} \][/tex]
4. Calculate the specific heat capacity \(C_p\):
[tex]\[ C_p = \frac{1,540}{200.0 \cdot 20.0} \][/tex]
[tex]\[ C_p = \frac{1,540}{4,000} \][/tex]
[tex]\[ C_p = 0.385 \, \text{J/(g·°C)} \][/tex]
### Conclusion:
The specific heat capacity of copper is \(0.385 \, \text{J/(g·°C)}\).
From the provided options:
- \(0.0130 \, \text{J/(g·°C)}\)
- \(0.0649 \, \text{J/(g·°C)}\)
- \(0.193 \, \text{J/(g·°C)}\)
- \(0.385 \, \text{J/(g·°C)}\)
The correct answer is:
[tex]\[ \boxed{0.385 \, \text{J/(g·°C)} } \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.