Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! To find the correlation coefficient between the density of population and death rate for the given cities, follow these detailed steps:
1. List the given data:
- Population density (\(x\)):
[tex]\[ 200, 500, 400, 700, 600, 300 \][/tex]
- Death rate (\(y\)):
[tex]\[ 10, 12, 10, 15, 9, 12 \][/tex]
2. Calculate the mean of the datasets:
- Mean density (\(\bar{x}\)):
[tex]\[ \bar{x} = \frac{200 + 500 + 400 + 700 + 600 + 300}{6} = \frac{2700}{6} = 450.0 \][/tex]
- Mean death rate (\(\bar{y}\)):
[tex]\[ \bar{y} = \frac{10 + 12 + 10 + 15 + 9 + 12}{6} \approx \frac{68}{6} \approx 11.3333 \][/tex]
3. Calculate the numerator for the correlation coefficient:
The numerator component is the sum of the product of the deviations of each pair of data points from their respective means:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
Calculate the deviations and their products individually:
[tex]\[ \begin{aligned} & (200 - 450)(10 - 11.3333) \approx (200 - 450)(10 - 11.3333) = (-250)(-1.3333) \approx 333.33 \\ & (500 - 450)(12 - 11.3333) = (50)(0.6667) \approx 33.33 \\ & (400 - 450)(10 - 11.3333) = (-50)(-1.3333) \approx 66.67 \\ & (700 - 450)(15 - 11.3333) = (250)(3.6667) \approx 916.67 \\ & (600 - 450)(9 - 11.3333) = (150)(-2.3333) \approx -350.00 \\ & (300 - 450)(12 - 11.3333) = (-150)(0.6667) \approx -100.00 \\ \end{aligned} \][/tex]
Summing these products:
[tex]\[ 333.33 + 33.33 + 66.67 + 916.67 - 350.00 - 100.00 = 900.0 \][/tex]
4. Calculate the denominator for the correlation coefficient:
The denominator is the product of the square roots of the sum of squared deviations:
[tex]\[ \sqrt{\sum (x_i - \bar{x})^2} \times \sqrt{\sum (y_i - \bar{y})^2} \][/tex]
Calculate the squared deviations separately:
[tex]\[ \begin{aligned} & (200 - 450)^2 = 62500 \\ & (500 - 450)^2 = 2500 \\ & (400 - 450)^2 = 2500 \\ & (700 - 450)^2 = 62500 \\ & (600 - 450)^2 = 22500 \\ & (300 - 450)^2 = 22500 \\ \end{aligned} \][/tex]
Sum of the squared deviations for density (\(\sum (x_i - \bar{x})^2\)):
[tex]\[ 62500 + 2500 + 2500 + 62500 + 22500 + 22500 = 172000 \][/tex]
Calculate the squared deviations separately for death rate:
[tex]\[ \begin{aligned} & (10 - 11.3333)^2 \approx 1.7778 \\ & (12 - 11.3333)^2 \approx 0.4444 \\ & (10 - 11.3333)^2 \approx 1.7778 \\ & (15 - 11.3333)^2 \approx 13.4444 \\ & (9 - 11.3333)^2 \approx 5.4444 \\ & (12 - 11.3333)^2 \approx 0.4444 \\ \end{aligned} \][/tex]
Sum of the squared deviations for death rate (\(\sum (y_i - \bar{y})^2\)):
[tex]\[ 1.7778 + 0.4444 + 1.7778 + 13.4444 + 5.4444 + 0.4444 = 23.3333 \][/tex]
Product of the square roots:
[tex]\[ \sqrt{172000} \times \sqrt{23.3333} \approx 414.76 \times 4.83 \approx 2020.726 \][/tex]
5. Calculate the correlation coefficient (\(r\)):
Finally, use the correlation formula:
[tex]\[ r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \][/tex]
Substituting the calculated values:
[tex]\[ r = \frac{900.0}{2020.726} \approx 0.445 \][/tex]
Therefore, the correlation coefficient between the density of population and the death rate for the given cities is approximately [tex]\(0.445\)[/tex].
1. List the given data:
- Population density (\(x\)):
[tex]\[ 200, 500, 400, 700, 600, 300 \][/tex]
- Death rate (\(y\)):
[tex]\[ 10, 12, 10, 15, 9, 12 \][/tex]
2. Calculate the mean of the datasets:
- Mean density (\(\bar{x}\)):
[tex]\[ \bar{x} = \frac{200 + 500 + 400 + 700 + 600 + 300}{6} = \frac{2700}{6} = 450.0 \][/tex]
- Mean death rate (\(\bar{y}\)):
[tex]\[ \bar{y} = \frac{10 + 12 + 10 + 15 + 9 + 12}{6} \approx \frac{68}{6} \approx 11.3333 \][/tex]
3. Calculate the numerator for the correlation coefficient:
The numerator component is the sum of the product of the deviations of each pair of data points from their respective means:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
Calculate the deviations and their products individually:
[tex]\[ \begin{aligned} & (200 - 450)(10 - 11.3333) \approx (200 - 450)(10 - 11.3333) = (-250)(-1.3333) \approx 333.33 \\ & (500 - 450)(12 - 11.3333) = (50)(0.6667) \approx 33.33 \\ & (400 - 450)(10 - 11.3333) = (-50)(-1.3333) \approx 66.67 \\ & (700 - 450)(15 - 11.3333) = (250)(3.6667) \approx 916.67 \\ & (600 - 450)(9 - 11.3333) = (150)(-2.3333) \approx -350.00 \\ & (300 - 450)(12 - 11.3333) = (-150)(0.6667) \approx -100.00 \\ \end{aligned} \][/tex]
Summing these products:
[tex]\[ 333.33 + 33.33 + 66.67 + 916.67 - 350.00 - 100.00 = 900.0 \][/tex]
4. Calculate the denominator for the correlation coefficient:
The denominator is the product of the square roots of the sum of squared deviations:
[tex]\[ \sqrt{\sum (x_i - \bar{x})^2} \times \sqrt{\sum (y_i - \bar{y})^2} \][/tex]
Calculate the squared deviations separately:
[tex]\[ \begin{aligned} & (200 - 450)^2 = 62500 \\ & (500 - 450)^2 = 2500 \\ & (400 - 450)^2 = 2500 \\ & (700 - 450)^2 = 62500 \\ & (600 - 450)^2 = 22500 \\ & (300 - 450)^2 = 22500 \\ \end{aligned} \][/tex]
Sum of the squared deviations for density (\(\sum (x_i - \bar{x})^2\)):
[tex]\[ 62500 + 2500 + 2500 + 62500 + 22500 + 22500 = 172000 \][/tex]
Calculate the squared deviations separately for death rate:
[tex]\[ \begin{aligned} & (10 - 11.3333)^2 \approx 1.7778 \\ & (12 - 11.3333)^2 \approx 0.4444 \\ & (10 - 11.3333)^2 \approx 1.7778 \\ & (15 - 11.3333)^2 \approx 13.4444 \\ & (9 - 11.3333)^2 \approx 5.4444 \\ & (12 - 11.3333)^2 \approx 0.4444 \\ \end{aligned} \][/tex]
Sum of the squared deviations for death rate (\(\sum (y_i - \bar{y})^2\)):
[tex]\[ 1.7778 + 0.4444 + 1.7778 + 13.4444 + 5.4444 + 0.4444 = 23.3333 \][/tex]
Product of the square roots:
[tex]\[ \sqrt{172000} \times \sqrt{23.3333} \approx 414.76 \times 4.83 \approx 2020.726 \][/tex]
5. Calculate the correlation coefficient (\(r\)):
Finally, use the correlation formula:
[tex]\[ r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \][/tex]
Substituting the calculated values:
[tex]\[ r = \frac{900.0}{2020.726} \approx 0.445 \][/tex]
Therefore, the correlation coefficient between the density of population and the death rate for the given cities is approximately [tex]\(0.445\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.