Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Select all the correct answers.

Which expressions are equivalent to [tex]\log _4\left(\frac{1}{4} x^2\right)[/tex]?

A. [tex]\log _4\left(\frac{1}{4}\right)+\log _4 x^2[/tex]

B. [tex]2 \log _4\left(\frac{1}{4}\right)-\log _4 x^2[/tex]

C. [tex]-2+2 \log _4 x[/tex]

D. [tex]-1+2 \log _4 x[/tex]

E. [tex]2 \log _4\left(\frac{1}{4} x\right)[/tex]


Sagot :

To determine which expressions are equivalent to \(\log_4\left(\frac{1}{4} x^2\right)\), we will use logarithm properties, such as the product rule \(\log_b(xy) = \log_b(x) + \log_b(y)\) and the power rule \(\log_b(x^n) = n \log_b(x)\).

1. \(\log_4\left(\frac{1}{4} x^2\right)\):
- Using the product rule for logarithms: \(\log_4\left(\frac{1}{4} x^2\right) = \log_4\left(\frac{1}{4}\right) + \log_4(x^2)\).
- Using the power rule for logarithms: \(\log_4(x^2) = 2 \log_4(x)\).
- Therefore, \(\log_4\left(\frac{1}{4} x^2\right) = \log_4\left(\frac{1}{4}\right) + 2 \log_4(x)\).

Now let's analyze each of the given expressions:

1. \(\log_4\left(\frac{1}{4}\right) + \log_4 x^2\):
- Simplifying the term on the right: \(\log_4 x^2 = 2 \log_4(x)\).
- Therefore, \(\log_4\left(\frac{1}{4}\right) + \log_4 x^2 = \log_4\left(\frac{1}{4}\right) + 2 \log_4(x)\), which is equivalent to the original expression.

2. \(2 \log_4\left(\frac{1}{4}\right) - \log_4 x^2\):
- Simplifying the terms: \(2 \log_4\left(\frac{1}{4}\right) = 2 (-1) = -2\) since \(\log_4(4^{-1}) = -1\).
- \(\log_4 x^2 = 2 \log_4(x)\).
- So, \(2 \log_4\left(\frac{1}{4}\right) - \log_4 x^2 = -2 - 2 \log_4(x)\), which is not equivalent to the original expression.

3. \(-2 + 2 \log_4 x\):
- This form does not equate to the original expression because \(\log_4\left(\frac{1}{4} x^2\right) = \log_4\left(\frac{1}{4}\right) + 2 \log_4(x)\), where \(\log_4\left(\frac{1}{4}\right) = -1\).
- The correct expression has \(-1\) not \(-2\).

4. \(-1 + 2 \log_4 x\):
- Since \(\log_4\left(\frac{1}{4}\right) = -1\) and \(\log_4 x^2 = 2 \log_4(x)\), this form \(-1 + 2 \log_4 x\) is equivalent to the original expression.

5. \(2 \log_4\left(\frac{1}{4} x\right)\):
- Using the product rule: \(\log_4\left(\frac{1}{4} x\right) = \log_4\left(\frac{1}{4}\right) + \log_4(x)\).
- So \(2 \log_4\left(\frac{1}{4} x\right) = 2 \left(\log_4\left(\frac{1}{4}\right) + \log_4(x)\right) = 2(-1 + \log_4(x)) = -2 + 2 \log_4(x)\).
- This form \(-2 + 2 \log_4(x)\) is not equivalent to the original expression.

Based on these steps, the expressions equivalent to \(\log_4\left(\frac{1}{4} x^2\right)\) are:
- \(\log_4\left(\frac{1}{4}\right) + \log_4 x^2\)
- [tex]\(-1 + 2 \log_4 x\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.