Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Select all the correct answers.

Which expressions are equivalent to [tex]\log _4\left(\frac{1}{4} x^2\right)[/tex]?

A. [tex]\log _4\left(\frac{1}{4}\right)+\log _4 x^2[/tex]

B. [tex]2 \log _4\left(\frac{1}{4}\right)-\log _4 x^2[/tex]

C. [tex]-2+2 \log _4 x[/tex]

D. [tex]-1+2 \log _4 x[/tex]

E. [tex]2 \log _4\left(\frac{1}{4} x\right)[/tex]


Sagot :

To determine which expressions are equivalent to \(\log_4\left(\frac{1}{4} x^2\right)\), we will use logarithm properties, such as the product rule \(\log_b(xy) = \log_b(x) + \log_b(y)\) and the power rule \(\log_b(x^n) = n \log_b(x)\).

1. \(\log_4\left(\frac{1}{4} x^2\right)\):
- Using the product rule for logarithms: \(\log_4\left(\frac{1}{4} x^2\right) = \log_4\left(\frac{1}{4}\right) + \log_4(x^2)\).
- Using the power rule for logarithms: \(\log_4(x^2) = 2 \log_4(x)\).
- Therefore, \(\log_4\left(\frac{1}{4} x^2\right) = \log_4\left(\frac{1}{4}\right) + 2 \log_4(x)\).

Now let's analyze each of the given expressions:

1. \(\log_4\left(\frac{1}{4}\right) + \log_4 x^2\):
- Simplifying the term on the right: \(\log_4 x^2 = 2 \log_4(x)\).
- Therefore, \(\log_4\left(\frac{1}{4}\right) + \log_4 x^2 = \log_4\left(\frac{1}{4}\right) + 2 \log_4(x)\), which is equivalent to the original expression.

2. \(2 \log_4\left(\frac{1}{4}\right) - \log_4 x^2\):
- Simplifying the terms: \(2 \log_4\left(\frac{1}{4}\right) = 2 (-1) = -2\) since \(\log_4(4^{-1}) = -1\).
- \(\log_4 x^2 = 2 \log_4(x)\).
- So, \(2 \log_4\left(\frac{1}{4}\right) - \log_4 x^2 = -2 - 2 \log_4(x)\), which is not equivalent to the original expression.

3. \(-2 + 2 \log_4 x\):
- This form does not equate to the original expression because \(\log_4\left(\frac{1}{4} x^2\right) = \log_4\left(\frac{1}{4}\right) + 2 \log_4(x)\), where \(\log_4\left(\frac{1}{4}\right) = -1\).
- The correct expression has \(-1\) not \(-2\).

4. \(-1 + 2 \log_4 x\):
- Since \(\log_4\left(\frac{1}{4}\right) = -1\) and \(\log_4 x^2 = 2 \log_4(x)\), this form \(-1 + 2 \log_4 x\) is equivalent to the original expression.

5. \(2 \log_4\left(\frac{1}{4} x\right)\):
- Using the product rule: \(\log_4\left(\frac{1}{4} x\right) = \log_4\left(\frac{1}{4}\right) + \log_4(x)\).
- So \(2 \log_4\left(\frac{1}{4} x\right) = 2 \left(\log_4\left(\frac{1}{4}\right) + \log_4(x)\right) = 2(-1 + \log_4(x)) = -2 + 2 \log_4(x)\).
- This form \(-2 + 2 \log_4(x)\) is not equivalent to the original expression.

Based on these steps, the expressions equivalent to \(\log_4\left(\frac{1}{4} x^2\right)\) are:
- \(\log_4\left(\frac{1}{4}\right) + \log_4 x^2\)
- [tex]\(-1 + 2 \log_4 x\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.