Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
In a right triangle, the two non-right angles, \( A \) and \( C \), are complementary. That is, \( A + C = 90^\circ \). For complementary angles in a right triangle, the sine of one angle is equal to the cosine of the other angle.
Given:
1. \(\sin(A) = \frac{24}{25}\)
2. \(\cos(C) = \frac{20}{20}\)
Step-by-Step Solution:
1. \(\sin(A) = \frac{24}{25}\):
- Since \( A \) and \( C \) are complementary angles, \(\cos(C) = \sin(A)\).
- Therefore, \(\cos(C) = \frac{24}{25}\).
2. \(\cos(C) = \frac{20}{20}\):
- Simplify \(\frac{20}{20}\): \(\frac{20}{20} = 1\).
- Since \( A \) and \( C \) are complementary angles, \(\sin(A) = \cos(C)\).
- Therefore, \(\sin(A) = 1\).
Thus:
[tex]\[ \cos(C) = \frac{24}{25} \][/tex]
[tex]\[ \sin(A) = 1 \][/tex]
Given:
1. \(\sin(A) = \frac{24}{25}\)
2. \(\cos(C) = \frac{20}{20}\)
Step-by-Step Solution:
1. \(\sin(A) = \frac{24}{25}\):
- Since \( A \) and \( C \) are complementary angles, \(\cos(C) = \sin(A)\).
- Therefore, \(\cos(C) = \frac{24}{25}\).
2. \(\cos(C) = \frac{20}{20}\):
- Simplify \(\frac{20}{20}\): \(\frac{20}{20} = 1\).
- Since \( A \) and \( C \) are complementary angles, \(\sin(A) = \cos(C)\).
- Therefore, \(\sin(A) = 1\).
Thus:
[tex]\[ \cos(C) = \frac{24}{25} \][/tex]
[tex]\[ \sin(A) = 1 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.