Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).

A right triangle [tex]$ABC$[/tex] has complementary angles [tex]$A$[/tex] and [tex]$C$[/tex].

If [tex]$\sin (A) = \frac{24}{25}$[/tex], the value of [tex]$\cos (C) =$[/tex] [tex]$\square$[/tex]

If [tex]$\cos (C) = \frac{20}{25}$[/tex], the value of [tex]$\sin (A) =$[/tex] [tex]$\square$[/tex]

Sagot :

In a right triangle, the two non-right angles, \( A \) and \( C \), are complementary. That is, \( A + C = 90^\circ \). For complementary angles in a right triangle, the sine of one angle is equal to the cosine of the other angle.

Given:
1. \(\sin(A) = \frac{24}{25}\)
2. \(\cos(C) = \frac{20}{20}\)

Step-by-Step Solution:

1. \(\sin(A) = \frac{24}{25}\):
- Since \( A \) and \( C \) are complementary angles, \(\cos(C) = \sin(A)\).
- Therefore, \(\cos(C) = \frac{24}{25}\).

2. \(\cos(C) = \frac{20}{20}\):
- Simplify \(\frac{20}{20}\): \(\frac{20}{20} = 1\).
- Since \( A \) and \( C \) are complementary angles, \(\sin(A) = \cos(C)\).
- Therefore, \(\sin(A) = 1\).

Thus:

[tex]\[ \cos(C) = \frac{24}{25} \][/tex]

[tex]\[ \sin(A) = 1 \][/tex]