Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's simplify the given expression step-by-step.
The original expression is:
[tex]\[ \frac{15 p^{-4} q^{-6}}{-20 p^{-12} q^{-3}} \][/tex]
### Step 1: Simplify the coefficient
Separate the numerical coefficients from the variables:
[tex]\[ \frac{15}{-20} \][/tex]
The coefficient simplifies to:
[tex]\[ \frac{15}{-20} = -\frac{3}{4} \][/tex]
### Step 2: Simplify the powers of \( p \)
Use the properties of exponents to simplify:
[tex]\[ \frac{p^{-4}}{p^{-12}} = p^{-4 - (-12)} = p^{-4 + 12} = p^{8} \][/tex]
### Step 3: Simplify the powers of \( q \)
Similarly, simplify the exponents of \( q \):
[tex]\[ \frac{q^{-6}}{q^{-3}} = q^{-6 - (-3)} = q^{-6 + 3} = q^{-3} \][/tex]
### Step 4: Combine the simplified parts
Combine the simplified coefficient and the variables:
[tex]\[ -\frac{3}{4} \cdot p^{8} \cdot q^{-3} \][/tex]
### Step 5: Express the final result in a proper fraction
Rewrite \( q^{-3} \) as \( \frac{1}{q^3} \) to express the entire expression as a single fraction:
[tex]\[ -\frac{3 p^8}{4 q^3} \][/tex]
Hence, the simplified form of the expression \(\frac{15 p^{-4} q^{-6}}{-20 p^{-12} q^{-3}}\) is:
[tex]\[ -\frac{3p^8}{4 q^3} \][/tex]
Among the given options, the correct answer is:
\[
-\frac{3p^8}{4 q^3}
\
The original expression is:
[tex]\[ \frac{15 p^{-4} q^{-6}}{-20 p^{-12} q^{-3}} \][/tex]
### Step 1: Simplify the coefficient
Separate the numerical coefficients from the variables:
[tex]\[ \frac{15}{-20} \][/tex]
The coefficient simplifies to:
[tex]\[ \frac{15}{-20} = -\frac{3}{4} \][/tex]
### Step 2: Simplify the powers of \( p \)
Use the properties of exponents to simplify:
[tex]\[ \frac{p^{-4}}{p^{-12}} = p^{-4 - (-12)} = p^{-4 + 12} = p^{8} \][/tex]
### Step 3: Simplify the powers of \( q \)
Similarly, simplify the exponents of \( q \):
[tex]\[ \frac{q^{-6}}{q^{-3}} = q^{-6 - (-3)} = q^{-6 + 3} = q^{-3} \][/tex]
### Step 4: Combine the simplified parts
Combine the simplified coefficient and the variables:
[tex]\[ -\frac{3}{4} \cdot p^{8} \cdot q^{-3} \][/tex]
### Step 5: Express the final result in a proper fraction
Rewrite \( q^{-3} \) as \( \frac{1}{q^3} \) to express the entire expression as a single fraction:
[tex]\[ -\frac{3 p^8}{4 q^3} \][/tex]
Hence, the simplified form of the expression \(\frac{15 p^{-4} q^{-6}}{-20 p^{-12} q^{-3}}\) is:
[tex]\[ -\frac{3p^8}{4 q^3} \][/tex]
Among the given options, the correct answer is:
\[
-\frac{3p^8}{4 q^3}
\
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.