Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To factorize the quadratic expression \(x^2 + 27x + 162\), we follow these steps:
1. Identify the quadratic expression: \(x^2 + 27x + 162\).
2. Find the roots of the quadratic equation: To find factors, we look for values of \(x\) that satisfy the equation \(x^2 + 27x + 162 = 0\).
We use the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
where \(a = 1\), \(b = 27\), and \(c = 162\).
3. Calculate the discriminant:
[tex]\[ b^2 - 4ac = 27^2 - 4(1)(162) = 729 - 648 = 81 \][/tex]
The discriminant is positive \(81\), implying two real roots.
4. Find the roots:
[tex]\[ x = \frac{{-27 \pm \sqrt{81}}}{2} = \frac{{-27 \pm 9}}{2} \][/tex]
[tex]\[ x = \frac{{-27 + 9}}{2} = \frac{{-18}}{2} = -9 \][/tex]
[tex]\[ x = \frac{{-27 - 9}}{2} = \frac{{-36}}{2} = -18 \][/tex]
Therefore, the roots are \(x = -9\) and \(x = -18\).
5. Factorize using the roots: If \(x = -9\) and \(x = -18\), we can write the factorized form as:
[tex]\[ (x + 9)(x + 18) \][/tex]
6. Expand the factorized form to confirm:
[tex]\[ (x + 9)(x + 18) = x^2 + 18x + 9x + 162 = x^2 + 27x + 162 \][/tex]
The factorization is indeed correct.
7. Extract individual terms from the factorized form: The terms are:
- From \((x + 9)\): \(x\) and \(9\).
- From \((x + 18)\): \(x\) and \(18\).
Thus, the complete individual terms involved in the factorization are \(9\), \(x\), \(18\), and \(x\).
Given the options, the correct answer is:
[tex]\[ \boxed{9, 9x, 18x} \][/tex]
1. Identify the quadratic expression: \(x^2 + 27x + 162\).
2. Find the roots of the quadratic equation: To find factors, we look for values of \(x\) that satisfy the equation \(x^2 + 27x + 162 = 0\).
We use the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
where \(a = 1\), \(b = 27\), and \(c = 162\).
3. Calculate the discriminant:
[tex]\[ b^2 - 4ac = 27^2 - 4(1)(162) = 729 - 648 = 81 \][/tex]
The discriminant is positive \(81\), implying two real roots.
4. Find the roots:
[tex]\[ x = \frac{{-27 \pm \sqrt{81}}}{2} = \frac{{-27 \pm 9}}{2} \][/tex]
[tex]\[ x = \frac{{-27 + 9}}{2} = \frac{{-18}}{2} = -9 \][/tex]
[tex]\[ x = \frac{{-27 - 9}}{2} = \frac{{-36}}{2} = -18 \][/tex]
Therefore, the roots are \(x = -9\) and \(x = -18\).
5. Factorize using the roots: If \(x = -9\) and \(x = -18\), we can write the factorized form as:
[tex]\[ (x + 9)(x + 18) \][/tex]
6. Expand the factorized form to confirm:
[tex]\[ (x + 9)(x + 18) = x^2 + 18x + 9x + 162 = x^2 + 27x + 162 \][/tex]
The factorization is indeed correct.
7. Extract individual terms from the factorized form: The terms are:
- From \((x + 9)\): \(x\) and \(9\).
- From \((x + 18)\): \(x\) and \(18\).
Thus, the complete individual terms involved in the factorization are \(9\), \(x\), \(18\), and \(x\).
Given the options, the correct answer is:
[tex]\[ \boxed{9, 9x, 18x} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.