Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's perform the indicated operation and simplify the expression \(\frac{6}{x-3} - \frac{2}{x+8}\). Here’s a step-by-step guide to solve and simplify it.
1. Find a common denominator: The denominators in the given expression are \(x-3\) and \(x+8\). The common denominator will be their product: \((x-3)(x+8)\).
2. Rewrite each fraction with the common denominator:
[tex]\[ \frac{6}{x-3} = \frac{6(x+8)}{(x-3)(x+8)} \][/tex]
[tex]\[ \frac{2}{x+8} = \frac{2(x-3)}{(x-3)(x+8)} \][/tex]
3. Combine the fractions:
[tex]\[ \frac{6(x+8)}{(x-3)(x+8)} - \frac{2(x-3)}{(x-3)(x+8)} \][/tex]
4. Subtract the numerators:
[tex]\[ \frac{6(x+8) - 2(x-3)}{(x-3)(x+8)} \][/tex]
5. Distribute and simplify the numerator:
- Distribute 6 in the first term: \(6(x+8) = 6x + 48\).
- Distribute -2 in the second term: \(2(x-3) = 2x - 6\).
Thus, the numerator becomes:
[tex]\[ 6x + 48 - 2x + 6 \][/tex]
6. Combine like terms in the numerator:
[tex]\[ (6x - 2x) + (48 + 6) = 4x + 54 \][/tex]
7. Factor out the common factor in the numerator:
[tex]\[ 4x + 54 = 2(2x + 27) \][/tex]
8. Write the simplified fraction:
[tex]\[ \frac{2(2x + 27)}{(x-3)(x+8)} \][/tex]
So, the simplified form of the given operation is:
[tex]\[ \frac{2(2x + 27)}{(x - 3)(x + 8)} \][/tex]
This is the expression in its fully factored and simplified form.
1. Find a common denominator: The denominators in the given expression are \(x-3\) and \(x+8\). The common denominator will be their product: \((x-3)(x+8)\).
2. Rewrite each fraction with the common denominator:
[tex]\[ \frac{6}{x-3} = \frac{6(x+8)}{(x-3)(x+8)} \][/tex]
[tex]\[ \frac{2}{x+8} = \frac{2(x-3)}{(x-3)(x+8)} \][/tex]
3. Combine the fractions:
[tex]\[ \frac{6(x+8)}{(x-3)(x+8)} - \frac{2(x-3)}{(x-3)(x+8)} \][/tex]
4. Subtract the numerators:
[tex]\[ \frac{6(x+8) - 2(x-3)}{(x-3)(x+8)} \][/tex]
5. Distribute and simplify the numerator:
- Distribute 6 in the first term: \(6(x+8) = 6x + 48\).
- Distribute -2 in the second term: \(2(x-3) = 2x - 6\).
Thus, the numerator becomes:
[tex]\[ 6x + 48 - 2x + 6 \][/tex]
6. Combine like terms in the numerator:
[tex]\[ (6x - 2x) + (48 + 6) = 4x + 54 \][/tex]
7. Factor out the common factor in the numerator:
[tex]\[ 4x + 54 = 2(2x + 27) \][/tex]
8. Write the simplified fraction:
[tex]\[ \frac{2(2x + 27)}{(x-3)(x+8)} \][/tex]
So, the simplified form of the given operation is:
[tex]\[ \frac{2(2x + 27)}{(x - 3)(x + 8)} \][/tex]
This is the expression in its fully factored and simplified form.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.