Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the distance between two points \( A(5,8) \) and \( B(-3,4) \) in a Cartesian plane, you can use the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, \((x_1, y_1)\) are the coordinates of point \( A \) and \((x_2, y_2)\) are the coordinates of point \( B \).
1. Identify the coordinates of the points:
- Point \( A \) has coordinates \((5, 8)\).
- Point \( B \) has coordinates \((-3, 4)\).
2. Substitute these coordinates into the distance formula:
[tex]\[ d = \sqrt{(-3 - 5)^2 + (4 - 8)^2} \][/tex]
3. Calculate the differences inside the parentheses:
[tex]\[ x_2 - x_1 = -3 - 5 = -8 \][/tex]
[tex]\[ y_2 - y_1 = 4 - 8 = -4 \][/tex]
4. Substitute these differences back into the formula:
[tex]\[ d = \sqrt{(-8)^2 + (-4)^2} \][/tex]
5. Square these differences:
[tex]\[ (-8)^2 = 64 \][/tex]
[tex]\[ (-4)^2 = 16 \][/tex]
6. Add the squared differences:
[tex]\[ 64 + 16 = 80 \][/tex]
7. Finally, take the square root of the sum to find the distance:
[tex]\[ d = \sqrt{80} \][/tex]
8. Simplifying the square root of 80:
[tex]\[ d = \sqrt{16 \times 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5} \][/tex]
9. Approximating further to a numerical value, we get:
[tex]\[ d \approx 8.94427190999916 \][/tex]
Therefore, the distance between the points [tex]\( A(5,8) \)[/tex] and [tex]\( B(-3,4) \)[/tex] is approximately [tex]\( 8.94427190999916 \)[/tex] units.
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, \((x_1, y_1)\) are the coordinates of point \( A \) and \((x_2, y_2)\) are the coordinates of point \( B \).
1. Identify the coordinates of the points:
- Point \( A \) has coordinates \((5, 8)\).
- Point \( B \) has coordinates \((-3, 4)\).
2. Substitute these coordinates into the distance formula:
[tex]\[ d = \sqrt{(-3 - 5)^2 + (4 - 8)^2} \][/tex]
3. Calculate the differences inside the parentheses:
[tex]\[ x_2 - x_1 = -3 - 5 = -8 \][/tex]
[tex]\[ y_2 - y_1 = 4 - 8 = -4 \][/tex]
4. Substitute these differences back into the formula:
[tex]\[ d = \sqrt{(-8)^2 + (-4)^2} \][/tex]
5. Square these differences:
[tex]\[ (-8)^2 = 64 \][/tex]
[tex]\[ (-4)^2 = 16 \][/tex]
6. Add the squared differences:
[tex]\[ 64 + 16 = 80 \][/tex]
7. Finally, take the square root of the sum to find the distance:
[tex]\[ d = \sqrt{80} \][/tex]
8. Simplifying the square root of 80:
[tex]\[ d = \sqrt{16 \times 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5} \][/tex]
9. Approximating further to a numerical value, we get:
[tex]\[ d \approx 8.94427190999916 \][/tex]
Therefore, the distance between the points [tex]\( A(5,8) \)[/tex] and [tex]\( B(-3,4) \)[/tex] is approximately [tex]\( 8.94427190999916 \)[/tex] units.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.