Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem where angles \( X \) and \( Y \) are supplementary, and angle \( X \) is 3 times the measure of angle \( Y \), we can follow these steps:
1. Understand the properties of supplementary angles:
Supplementary angles are two angles whose measures add up to 180 degrees. Therefore, we have the equation:
[tex]\[ X + Y = 180^\circ \][/tex]
2. Express angle \( X \) in terms of angle \( Y \):
Given that angle \( X \) is 3 times the measure of angle \( Y \), we can write:
[tex]\[ X = 3Y \][/tex]
3. Substitute the expression for \( X \) into the supplementary angle equation:
Substitute \( X = 3Y \) into the equation \( X + Y = 180^\circ \):
[tex]\[ 3Y + Y = 180^\circ \][/tex]
Simplify the equation:
[tex]\[ 4Y = 180^\circ \][/tex]
4. Solve for angle \( Y \):
Divide both sides of the equation by 4:
[tex]\[ Y = \frac{180^\circ}{4} = 45^\circ \][/tex]
5. Determine the measure of angle \( X \):
Since \( X \) is 3 times the measure of \( Y \), we have:
[tex]\[ X = 3Y = 3 \times 45^\circ = 135^\circ \][/tex]
Therefore, the measure of angle \( X \) is:
[tex]\[ 135^\circ \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{135^\circ} \][/tex]
1. Understand the properties of supplementary angles:
Supplementary angles are two angles whose measures add up to 180 degrees. Therefore, we have the equation:
[tex]\[ X + Y = 180^\circ \][/tex]
2. Express angle \( X \) in terms of angle \( Y \):
Given that angle \( X \) is 3 times the measure of angle \( Y \), we can write:
[tex]\[ X = 3Y \][/tex]
3. Substitute the expression for \( X \) into the supplementary angle equation:
Substitute \( X = 3Y \) into the equation \( X + Y = 180^\circ \):
[tex]\[ 3Y + Y = 180^\circ \][/tex]
Simplify the equation:
[tex]\[ 4Y = 180^\circ \][/tex]
4. Solve for angle \( Y \):
Divide both sides of the equation by 4:
[tex]\[ Y = \frac{180^\circ}{4} = 45^\circ \][/tex]
5. Determine the measure of angle \( X \):
Since \( X \) is 3 times the measure of \( Y \), we have:
[tex]\[ X = 3Y = 3 \times 45^\circ = 135^\circ \][/tex]
Therefore, the measure of angle \( X \) is:
[tex]\[ 135^\circ \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{135^\circ} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.